Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump

被引:129
作者
Luecke, H [1 ]
机构
[1] Univ Calif Irvine, UCI Program Macromol Struct, Dept Mol Biol, Irvine, CA 92697 USA
[2] Univ Calif Irvine, UCI Program Macromol Struct, Dept Biochem, Irvine, CA 92697 USA
[3] Univ Calif Irvine, UCI Program Macromol Struct, Dept Physiol, Irvine, CA 92697 USA
[4] Univ Calif Irvine, UCI Program Macromol Struct, Dept Biophys, Irvine, CA 92697 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2000年 / 1460卷 / 01期
基金
美国国家卫生研究院;
关键词
high-resolution membrane protein structure; light-driven ion transport; ion pump mechanism;
D O I
10.1016/S0005-2728(00)00135-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M slate in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH-) ions from the extracellular to the cytoplasmic side. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:133 / 156
页数:24
相关论文
共 94 条
[1]  
Althaus T, 1995, ISRAEL J CHEM, V35, P227
[2]   Titration of aspartate-85 in bacteriorhodopsin: What it says about chromophore isomerization and proton release [J].
Balashov, SP ;
Imasheva, ES ;
Govindjee, R ;
Ebrey, TG .
BIOPHYSICAL JOURNAL, 1996, 70 (01) :473-481
[3]   EFFECT OF THE ARGININE-82 TO ALANINE MUTATION IN BACTERIORHODOPSIN ON DARK-ADAPTATION, PROTON RELEASE, AND THE PHOTOCHEMICAL CYCLE [J].
BALASHOV, SP ;
GOVINDJEE, R ;
KONO, M ;
IMASHEVA, E ;
LUKASHEV, E ;
EBREY, TG ;
CROUCH, RK ;
MENICK, DR ;
FENG, Y .
BIOCHEMISTRY, 1993, 32 (39) :10331-10343
[4]  
BERLHALI H, 1999, STRUCTURE, V7, P909
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   A SPECTROSCOPIC, PHOTOCALORIMETRIC, AND THEORETICAL INVESTIGATION OF THE QUANTUM EFFICIENCY OF THE PRIMARY EVENT IN BACTERIORHODOPSIN [J].
BIRGE, RR ;
COOPER, TM ;
LAWRENCE, AF ;
MASTHAY, MB ;
VASILAKIS, C ;
ZHANG, CF ;
ZIDOVETZKI, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (11) :4063-4074
[7]   REVISED ASSIGNMENT OF ENERGY-STORAGE IN THE PRIMARY PHOTOCHEMICAL EVENT IN BACTERIORHODOPSIN [J].
BIRGE, RR ;
COOPER, TM ;
LAWRENCE, AF ;
MASTHAY, MB ;
ZHANG, CF ;
ZIDOVETZKI, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (11) :4327-4328
[8]   STRUCTURE OF PURPLE MEMBRANE [J].
BLAUROCK, AE ;
STOECKENIUS, W .
NATURE-NEW BIOLOGY, 1971, 233 (39) :152-+
[9]   Linear dichroism measurements on oriented purple membranes between parallel polarizers: Contribution of linear birefringence and applications to chromophore isomerization [J].
Borucki, B ;
Otto, H ;
Heyn, MP .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (19) :3821-3829
[10]   RESONANCE RAMAN-SPECTRA OF BACTERIORHODOPSINS PRIMARY PHOTOPRODUCT - EVIDENCE FOR A DISTORTED 13-CIS RETINAL CHROMOPHORE [J].
BRAIMAN, M ;
MATHIES, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (02) :403-407