Modular epistasis in yeast metabolism

被引:444
作者
Segrè, D
DeLuna, A
Church, GM
Kishony, R
机构
[1] Harvard Univ, Bauer Ctr Genom Res, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Med, Lipper Ctr Computat Genet, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
关键词
D O I
10.1038/ng1489
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Epistatic interactions, manifested in the effects of mutations on the phenotypes caused by other mutations, may help uncover the functional organization of complex biological networks(1-3). Here, we studied system-level epistatic interactions by computing growth phenotypes of all single and double knockouts of 890 metabolic genes in Saccharomyces cerevisiae, using the framework of flux balance analysis(4). A new scale for epistasis identified a distinctive trimodal distribution of these epistatic effects, allowing gene pairs to be classified as buffering, aggravating or noninteracting(2,5). We found that the ensuing epistatic interaction network(6) could be organized hierarchically into function-enriched modules that interact with each other 'monochromatically' (i.e., with purely aggravating or purely buffering epistatic links). This property extends the concept of epistasis from single genes to functional units and provides a new definition of biological modularity, which emphasizes interactions between, rather than within, functional modules. Our approach can be used to infer functional gene modules from purely phenotypic epistasis measurements.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 30 条
  • [11] From molecular to modular cell biology
    Hartwell, LH
    Hopfield, JJ
    Leibler, S
    Murray, AW
    [J]. NATURE, 1999, 402 (6761) : C47 - C52
  • [12] Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae
    Ihmels, J
    Levy, R
    Barkai, N
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (01) : 86 - 92
  • [13] Advances in flux balance analysis
    Kauffman, KJ
    Prakash, P
    Edwards, JS
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (05) : 491 - 496
  • [14] Kaufman A, 2004, 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, P332
  • [15] Kishony Roy, 2003, J Biol, V2, P14, DOI 10.1186/1475-4924-2-14
  • [16] Minimal cut sets in biochemical reaction networks
    Klamt, S
    Gilles, ED
    [J]. BIOINFORMATICS, 2004, 20 (02) : 226 - 234
  • [17] DELETERIOUS MUTATIONS AND THE EVOLUTION OF SEXUAL REPRODUCTION
    KONDRASHOV, AS
    [J]. NATURE, 1988, 336 (6198) : 435 - 440
  • [18] Genome complexity, robustness and genetic interactions in digital organisms
    Lenski, RE
    Ofria, C
    Collier, TC
    Adami, C
    [J]. NATURE, 1999, 400 (6745) : 661 - 664
  • [19] Network motifs: Simple building blocks of complex networks
    Milo, R
    Shen-Orr, S
    Itzkovitz, S
    Kashtan, N
    Chklovskii, D
    Alon, U
    [J]. SCIENCE, 2002, 298 (5594) : 824 - 827
  • [20] Hierarchical thinking in network biology: the unbiased modularization of biochemical networks
    Papin, JA
    Reed, JL
    Palsson, BO
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (12) : 641 - 647