A comparison of two fast algorithms for computing the distance between convex polyhedra

被引:45
作者
Cameron, S [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
来源
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION | 1997年 / 13卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
closest-points; convex polyhedra; distance computations; simulation; tracking;
D O I
10.1109/70.650170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of tracking the distance between two convex polyhedra is finding applications in many areas of robotics. The algorithm of Lin and Canny is a well-known fast solution to this: problem, but by recasting the algorithms into configuration space, we show that a minor modification to the earlier algorithm of Gilbert, Johnson, and Keerthi also gives this algorithm the same expected cost.
引用
收藏
页码:915 / 920
页数:6
相关论文
共 8 条
[1]  
[Anonymous], IEEE C ROB AUT
[2]  
Cameron S, 1997, IEEE INT CONF ROBOT, P3112, DOI 10.1109/ROBOT.1997.606761
[3]  
CAMERON SA, 1986, IEEE T ROBOTIC AUTOM, P591
[4]  
COHEN J, 1995, INT 3D GRAPH C MONT, P189
[5]   COMPUTING THE DISTANCE BETWEEN GENERAL CONVEX OBJECTS IN 3-DIMENSIONAL SPACE [J].
GILBERT, EG ;
FOO, CP .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1990, 6 (01) :53-61
[6]   A FAST PROCEDURE FOR COMPUTING THE DISTANCE BETWEEN COMPLEX OBJECTS IN 3-DIMENSIONAL SPACE [J].
GILBERT, EG ;
JOHNSON, DW ;
KEERTHI, SS .
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, 1988, 4 (02) :193-203
[7]  
QIN C, 1995, P IEEE INT S ASS TAS, P207
[8]  
Sato Y, 1996, IEEE INT CONF ROBOT, P771, DOI 10.1109/ROBOT.1996.503867