Abstract wave equations with generalized Wentzell boundary conditions

被引:18
作者
Bátkai, A
Engel, KJ
机构
[1] Univ Laquila, Dept Pure & Appl Math, Div Engn, I-67040 Roio Poggio, Italy
[2] ELTE, TTK, Dept Appl Anal, H-1518 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
wave equations; sine and cosine families; Wentzell boundary conditions; phase spaces; perturbation; operator matrices;
D O I
10.1016/j.jde.2003.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a general framework which allows to verify if abstract wave equations with generalized Wentzell boundary conditions are well-posed, i.e., are governed by a cosine family. As an example we study wave equations for second order differential operators on C[0,1] with non-local Wentzell-type boundary conditions. Moreover, in Appendix A we give a perturbation result for sine and cosine families. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 37 条
[1]  
[Anonymous], 1985, SEMIGROUPS OPERATORS
[2]  
[Anonymous], PUBL RES I MATH SCI
[3]   The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions [J].
Arendt, W ;
Metafune, G ;
Pallara, D ;
Romanelli, S .
SEMIGROUP FORUM, 2003, 67 (02) :247-261
[4]  
ARENDT W, 1989, PITMAN RES, V190, P21
[5]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[6]   Analytic semigroups on H1(Ω) generated by degenerate elliptic operators [J].
Barbu, V ;
Favini, A .
SEMIGROUP FORUM, 2001, 62 (02) :317-328
[7]   Ventcel's boundary conditions and analytic semigroups [J].
Campiti, M ;
Metafune, G .
ARCHIV DER MATHEMATIK, 1998, 70 (05) :377-390
[8]  
Campiti M., 2000, GRADUATE TEXTS MATH, V194, P383
[9]  
CASARINO V, 2004, IN PRESS DISCRETE CO, P35
[10]  
CLEMENT CA, 1986, NEDERL AKAD WETENSCH, V48, P379