Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells

被引:225
作者
Cotta-Ramusino, C
Fachinetti, D
Lucca, C
Doksani, Y
Lopes, M
Sogo, J
Foiani, M
机构
[1] Ist FIRC Oncol Mol, I-20141 Milan, Italy
[2] Univ Studi Milano, Dipartimento Sci Biomol & Biotecnol, I-20133 Milan, Italy
[3] ETH Honggerberg, Inst Cell Biol, CH-8093 Zurich, Switzerland
关键词
D O I
10.1016/j.molcel.2004.11.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique [2D gel] and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 41 条
[11]   DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae [J].
Foiani, M ;
Pellicioli, A ;
Lopes, M ;
Lucca, C ;
Ferrari, M ;
Liberi, G ;
Falconi, MM ;
Plevani, P .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2000, 451 (1-2) :187-196
[12]  
Friedman KL, 1995, METHOD ENZYMOL, V262, P613
[13]   Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants [J].
Jia, XD ;
Weinert, T ;
Lydall, D .
GENETICS, 2004, 166 (02) :753-764
[14]   Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae [J].
Kamimura, Y ;
Tak, YS ;
Sugino, A ;
Araki, H .
EMBO JOURNAL, 2001, 20 (08) :2097-2107
[15]   Maintenance of genome stability in Saccharomyces cerevisiae [J].
Kolodner, RD ;
Putnam, CD ;
Myung, K .
SCIENCE, 2002, 297 (5581) :552-557
[16]  
Lewis LK, 2002, GENETICS, V160, P49
[17]   ORGANIZATION OF REPLICATION OF RIBOSOMAL DNA IN SACCHAROMYCES-CEREVISIAE [J].
LINSKENS, MHK ;
HUBERMAN, JA .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (11) :4927-4935
[18]   The DNA replication checkpoint response stabilizes stalled replication forks [J].
Lopes, M ;
Cotta-Ramusino, C ;
Pellicioli, A ;
Liberi, G ;
Plevani, P ;
Muzi-Falconi, M ;
Newlon, CS ;
Foiani, M .
NATURE, 2001, 412 (6846) :557-561
[19]   Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms [J].
Lopes, M ;
Cotta-Ramusino, C ;
Liberi, G ;
Foiani, M .
MOLECULAR CELL, 2003, 12 (06) :1499-1510
[20]   Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing [J].
Lucca, C ;
Vanoli, F ;
Cotta-Ramusino, C ;
Pellicioli, A ;
Liberi, G ;
Haber, J ;
Foiani, M .
ONCOGENE, 2004, 23 (06) :1206-1213