Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure

被引:276
作者
Luo, ND
Pereira, S
Sahin, O
Lin, J
Huang, SX
Michel, L
Zhang, QJ
机构
[1] Iowa State Univ, Dept Vet Microbiol & Prevent Med, Ames, IA 50011 USA
[2] Ohio State Univ, Ohio Agr Res & Dev Ctr, Food Anim Hlth Res Program, Wooster, OH 44691 USA
关键词
colonization; gyrA mutation; poultry;
D O I
10.1073/pnas.0408966102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Campylobacter jejuni, a major foodborne human pathogen, has become increasingly resistant to fluoroquinolone (FQ) antimicrobials. By using clonally related isolates and genetically defined mutants, we determined the fitness of FQ-resistant Campylobacter in chicken (a natural host and a major reservoir for C jejuni) in the absence of antibiotic selection pressure. When monoinoculated into the host, FQ-resistant and FQ-susceptible Campylobacter displayed similar levels of colonization and persistence in the absence of FQ antimicrobials. The prolonged colonization in chickens did not result in loss of the FQ resistance and the resistance-conferring point mutation (C257 --> T) in the gyrA gene. Strikingly, when coinoculated into chickens, the FQ-resistant Campylobacter isolates outcompeted the majority of the FQ-susceptible strains, indicating that the resistant Campylobacter was biologically fit in the chicken host. The fitness advantage was not due to compensatory mutations in the genes targeted by FQ and was linked directly to the single point mutation in gyrA, which confers on Campylobacter a high-level resistance to FQ antimicrobials. In certain genetic backgrounds, the same point mutation entailed a biological cost on Campylobacter, as evidenced by its inability to compete with the FQ-susceptible Campylobacter. These findings provide a previously unclescribed demonstration of the profound effect of a resistance-conferring point mutation in gyrA on the fitness of a major foodborne pathogen in its natural host and suggest that the rapid emergence of FQ-resistant Campylobacter on a worldwide scale may be attributable partly to the enhanced fitness of the FQ-resistant isolates.
引用
收藏
页码:541 / 546
页数:6
相关论文
共 39 条
[1]   The biological cost of antibiotic resistance [J].
Andersson, DI ;
Levin, BR .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (05) :489-493
[2]   Persistence of antibiotic resistant bacteria [J].
Andersson, DI .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (05) :452-456
[3]   Single or double mutational alterations of GyrA associated with fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli [J].
Bachoual, R ;
Ouabdesselam, S ;
Mory, F ;
Lascols, C ;
Soussy, CJ ;
Tankovic, J .
MICROBIAL DRUG RESISTANCE, 2001, 7 (03) :257-261
[4]   Interaction between DNA gyrase and quinolones:: Effects of alanine mutations at GyrA subunit residues Ser83 and Asp87 [J].
Barnard, FM ;
Maxwell, A .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (07) :1994-2000
[5]   Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori [J].
Björkholm, B ;
Sjölund, M ;
Falk, PG ;
Berg, OG ;
Engstrand, L ;
Andersson, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14607-14612
[6]   Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J].
Björkman, J ;
Nagaev, I ;
Berg, OG ;
Hughes, D ;
Andersson, DI .
SCIENCE, 2000, 287 (5457) :1479-1482
[7]   Virulence of antibiotic-resistant Salmonella typhimurium [J].
Björkman, J ;
Hughes, D ;
Andersson, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3949-3953
[8]   DNA topoisomerases: Structure, function, and mechanism [J].
Champoux, JJ .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :369-413
[9]   Genetic basis of quinolone resistance and epidemiology of resistant and susceptible isolates of porcine Campylobacter coli strains [J].
Cooper, R ;
Segal, H ;
Lastovica, AJ ;
Elisha, BG .
JOURNAL OF APPLIED MICROBIOLOGY, 2002, 93 (02) :241-249
[10]   Fluoroquinolones: Action and resistance [J].
Drlica, K ;
Malik, M .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2003, 3 (03) :249-282