Hybridization induced dequenching of fluorescein-labeled oligonucleotides - A novel strategy for PCR detection and genotyping

被引:22
作者
Vaughn, CP
Elenitoba-Johnson, KSJ
机构
[1] Univ Utah, Sch Med, ARUP Inst Clin & Expt Pathol, Salt Lake City, UT USA
[2] Univ Utah, Sch Med, Dept Pathol, Salt Lake City, UT USA
关键词
D O I
10.1016/S0002-9440(10)63627-9
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Fluorescence-based detection methods are being increasingly utilized in molecular analyses. Sequence-specific fluorescently-labeled probes are favored because they provide specific product identification. The most established fluorescence-based detection systems employ a resonance energy transfer mechanism effected through the interaction of two or more fluorophores or functional groups conjugated to oligonucleotide probes. The design, synthesis and purification of such multiple fluorophore-labeled probes can be technically challenging and expensive. By comparison, single fluorophore-labeled probes are easier to design and synthesize, and are straightforward to implement in molecular assays. We describe herein a novel fluorescent strategy for specific nucleic acid detection and genotyping. The format utilizes an internally quenched fluorescein-oligonucleotide conjugate that is subsequently dequenched following hybridization to the target with an attendant increase in fluorescence. Reversibility of the process with strand dissociation permits Tm-based assessment of bp complementarity and mismatches. Using this approach, we demonstrated specific detection, and discrimination of base substitutions of a variety of synthetic nucleic acid targets including Factor V Leiden and methylenetetrahydrofolate reductase. We further demonstrated compatibility of the novel chemistry with polymerase chain reaction by amplification and genotyping of the above listed loci and the human hemoglobin 0 chain locus. In total, we analyzed 172 clinical samples, comprising wild-type, heterozygous and homozygous mutants of all three loci, with 100% accuracy as confirmed by DNA sequencing, established dual hybridization probe or high performance liquid chromatography-based methods. Our results indicate that the dequenching-based single fluorophore format is a feasible strategy for the specific detection of nucleic acids in solution, and that assays using this strategy can provide accurate genotyping results.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 35 条
[1]   QUANTITATIVE MEASUREMENT OF PARAMYXOVIRUS FUSION - DIFFERENCES IN REQUIREMENTS OF GLYCOPROTEINS BETWEEN SIMIAN-VIRUS-5 AND HUMAN PARAINFLUENZA-VIRUS-3 OR NEWCASTLE-DISEASE VIRUS [J].
BAGAI, S ;
LAMB, RA .
JOURNAL OF VIROLOGY, 1995, 69 (11) :6712-6719
[2]   Integrated amplification and detection of the C677T point mutation in the methylenetetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves [J].
Bernard, PS ;
Lay, MJ ;
Wittwer, CT .
ANALYTICAL BIOCHEMISTRY, 1998, 255 (01) :101-107
[3]   MUTATION IN BLOOD-COAGULATION FACTOR-V ASSOCIATED WITH RESISTANCE TO ACTIVATED PROTEIN-C [J].
BERTINA, RM ;
KOELEMAN, BPC ;
KOSTER, T ;
ROSENDAAL, FR ;
DIRVEN, RJ ;
DERONDE, H ;
VANDERVELDEN, PA ;
REITSMA, PH .
NATURE, 1994, 369 (6475) :64-67
[4]   MECHANISM OF FLUORESCENCE CONCENTRATION QUENCHING OF CARBOXYFLUORESCEIN IN LIPOSOMES - ENERGY-TRANSFER TO NONFLUORESCENT DIMERS [J].
CHEN, RF ;
KNUTSON, JR .
ANALYTICAL BIOCHEMISTRY, 1988, 172 (01) :61-77
[5]   ANALYSIS OF FLUORESCENCE ENERGY-TRANSFER IN DUPLEX AND BRANCHED DNA-MOLECULES [J].
COOPER, JP ;
HAGERMAN, PJ .
BIOCHEMISTRY, 1990, 29 (39) :9261-9268
[6]   Fluorescein-labeled oligonucleotides for real-time PCR: Using the inherent quenching of deoxyguanosine nucleotides [J].
Crockett, AO ;
Wittwer, CT .
ANALYTICAL BIOCHEMISTRY, 2001, 290 (01) :89-97
[7]   DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications [J].
Didenko, VV .
BIOTECHNIQUES, 2001, 31 (05) :1106-+
[8]   Multiplex PCR by multicolor fluorimetry and fluorescence melting curve analysis [J].
Elenitoba-Johnson, KSJ ;
Bohling, SD ;
Wittwer, CT ;
King, TC .
NATURE MEDICINE, 2001, 7 (02) :249-253
[9]   Real time quantitative PCR [J].
Heid, CA ;
Stevens, J ;
Livak, KJ ;
Williams, PM .
GENOME RESEARCH, 1996, 6 (10) :986-994
[10]   KINETIC PCR ANALYSIS - REAL-TIME MONITORING OF DNA AMPLIFICATION REACTIONS [J].
HIGUCHI, R ;
FOCKLER, C ;
DOLLINGER, G ;
WATSON, R .
BIO-TECHNOLOGY, 1993, 11 (09) :1026-1030