Reduction of computation time for crossed-grating problems: a group-theoretic approach

被引:26
作者
Bai, BF [1 ]
Li, LF [1 ]
机构
[1] Tsinghua Univ, Dept Precis Instruments, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
关键词
D O I
10.1364/JOSAA.21.001886
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
systematic approach based on group theory is established to deal with diffraction problems of crossed gratings by exploiting symmetries. With this approach, a problem in an asymmetrical incident mounting can be decomposed into a superposition of several symmetrical basis problems so that the computation efficiency is improved effectively. This methodology offers a convenient and succinct way to treat all possible symmetry cases by following only several mechanical steps instead of intricate mathematical considerations or physical intuition. It is also general, applicable to both scalar-wave and vector-wave problems and in principle can be easily adapted to any numerical method. A numerical example is presented to show its application and effectiveness. (C) 2004 Optical Society of America.
引用
收藏
页码:1886 / 1894
页数:9
相关论文
共 28 条
[1]   Diffraction of electromagnetic waves by dielectric crossed gratings: a three-dimensional Rayleigh-Fourier solution [J].
Bagnoud, V ;
Mainguy, S .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (06) :1277-1285
[2]   ELECTROMAGNETIC DIFFRACTION ANALYSIS OF 2-DIMENSIONAL GRATINGS [J].
BRAUER, R ;
BRYNGDAHL, O .
OPTICS COMMUNICATIONS, 1993, 100 (1-4) :1-5
[3]  
Bruno O. P., 1996, Applied Computational Electromagnetics Society Journal, V11, P17
[4]   NUMERICAL-SOLUTION OF DIFFRACTION PROBLEMS - A METHOD OF VARIATION OF BOUNDARIES .3. DOUBLY PERIODIC GRATINGS [J].
BRUNO, OP ;
REITICH, F .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (12) :2551-2562
[5]  
Cornwell JF, 1997, GROUP THEORY PHYS IN, P299
[6]   CROSSED GRATINGS - THEORY AND ITS APPLICATIONS [J].
DERRICK, GH ;
MCPHEDRAN, RC ;
MAYSTRE, D ;
NEVIERE, M .
APPLIED PHYSICS, 1979, 18 (01) :39-52
[7]  
DOBSON DC, 1991, INT C APPLICATION TH, V1545, P106
[8]   Parametric formulation of the Fourier modal method for crossed surface-relief gratings [J].
Granet, G ;
Plumey, JP .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2002, 4 (05) :S145-S149
[9]   Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization [J].
Granet, G ;
Guizal, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (05) :1019-1023
[10]   Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings [J].
Granet, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05) :1121-1131