Isoperimetric inequalities and the dodecahedral conjecture

被引:6
作者
Bezdek, K
机构
[1] Department of Geometry, Eötvös University, 1088 Budapest
关键词
D O I
10.1142/S0129167X9700038X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dodecahedrad conjecture, posed more than 50 years ago, says that the volume of any Voronoi polyhedron of a unit sphere packing in E-3 is at least as large as the volume of a regular dodecahedron of inradius 1. In this paper we show how the dodecahedral conjecture can be obtained from the distance conjecture of 14 and 15 nonoverlapping unit spheres and from the isoperimetric conjecture of Voronoi laces of unit sphere packings.
引用
收藏
页码:759 / 780
页数:22
相关论文
共 20 条
[1]  
[Anonymous], INT J MATH
[2]   MAXIMUM DENSITY SPACE PACKING WITH PARALLEL STRINGS OF SPHERES [J].
BEZDEK, A ;
KUPERBERG, W ;
MAKAI, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (03) :277-283
[3]   The minimum value of quadratic forms, and the closest packing of spheres [J].
Blichfeldt, HF .
MATHEMATISCHE ANNALEN, 1929, 101 :605-608
[4]   PACKING OF SPHERES IN SPACES OF CONSTANT CURVATURE [J].
BOROCZKY, K .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (3-4) :243-261
[5]  
Fejes L., 1942, Math. Z., V48, P676, DOI DOI 10.1007/BF01180035
[6]  
Fejes Toth L., 1964, REGULAR FIGURES
[7]  
Florian A., 1956, MONATSH MATH, V60, P130
[8]  
Gauss C.F., 1840, J. reine angew. Math., V20, P312, DOI [10.1515/crll.1840.20.312, DOI 10.1515/CRLL.1840.20.312]
[9]  
Golderg M., 1934, Tohoku Math. J, V40, P226
[10]   THE STATUS OF THE KEPLER CONJECTURE [J].
HALES, TC .
MATHEMATICAL INTELLIGENCER, 1994, 16 (03) :47-58