Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing

被引:63
作者
Zeng, CQ [1 ]
Berget, SM [1 ]
机构
[1] Baylor Coll Med, Verna & Mars McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
关键词
D O I
10.1128/MCB.20.21.8290-8301.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Interaction between transcription and pre-mRNA processing,ia binding of polymerase II (Pol II) to factors involved in capping, splicing, and polyadenylation has recently been demonstrated. The C-terminal domain (CTD), a highly phosphorylated repeat sequence of the largest subunit of Pol IT, has been implicated in this interaction because deletion of this domain affects downstream RNA processing events and because it is the binding site for numerous processing factors. Here we show that recombinant CTD, free of other components of Pol II, activated in vitro splicing and assembly of the spliceosome in nuclear extracts if, and only if, the assayed precursor RNA was recognized via exon definition, i.e., if the substrates contained complete exons with both 3' and 5' splice sites. Furthermore, depletion of intact Pol LI inactivated splicing of this set of precursor RNAs and addition of recombinant CTD restored activity. The added recombinant CTD was quickly hyper- and hypophosphorylated in extract, became associated with the precursor RNA, and stimulated the association of U1 snRNPs but not ASF/SF2 with substrate ELA, These observations suggest that the mode of interaction between the CTD and splicing factors Is integrally tied to exon definition and the mechanism whereby distal exons can be recognized and brought into juxtaposition during assembly of the spliceosome.
引用
收藏
页码:8290 / 8301
页数:12
相关论文
共 49 条
[1]   Biochemistry and regulation of pre-mRNA splicing [J].
Adams, MD ;
Rudner, DZ ;
Rio, DC .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (03) :331-339
[2]   SPLICING OF BALBIANI RING-1 GENE PREMESSENGER RNA OCCURS SIMULTANEOUSLY WITH TRANSCRIPTION [J].
BAUREN, G ;
WIESLANDER, L .
CELL, 1994, 76 (01) :183-192
[3]   Coupling RNA polymerase II transcription with pre-mRNA processing [J].
Bentley, D .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :347-351
[4]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[5]   SPLICE SITE SELECTION, RATE OF SPLICING, AND ALTERNATIVE SPLICING ON NASCENT TRANSCRIPTS [J].
BEYER, AL ;
OSHEIM, YN .
GENES & DEVELOPMENT, 1988, 2 (06) :754-765
[6]  
BLACK DL, 1995, RNA, V1, P763
[7]   TRANSCRIPTION-DEPENDENT REDISTRIBUTION OF THE LARGE SUBUNIT OF RNA-POLYMERASE-II TO DISCRETE NUCLEAR DOMAINS [J].
BREGMAN, DB ;
DU, L ;
VANDERZEE, S ;
WARREN, SL .
JOURNAL OF CELL BIOLOGY, 1995, 129 (02) :287-298
[8]   THE NUCLEAR MATRIX PHOSPHOPROTEIN P255 ASSOCIATES WITH SPLICING COMPLEXES AS PART OF THE [U4/U6.U5] TRI-SNRNP PARTICLE [J].
CHABOT, B ;
BISOTTO, S ;
VINCENT, M .
NUCLEIC ACIDS RESEARCH, 1995, 23 (16) :3206-3213
[9]   mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Takagi, T ;
Moore, CR ;
Buratowski, S .
GENES & DEVELOPMENT, 1997, 11 (24) :3319-3326
[10]   A CTD function linking transcription to splicing [J].
Corden, JL ;
Patturajan, M .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (11) :413-416