Confinement of thermoresponsive hydrogels in nanostructured porous silicon dioxide templates

被引:100
作者
Segal, Ester
Perelman, Loren A.
Cunin, Frederique
Di Renzo, Francesco
Devoisselle, Jean-Marie
Li, Yang Yang
Sailor, Michael J.
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] Inst Charles Gerhardt, CNRS,UMR 5618, UMI, ENSCM, F-34296 Montpellier, France
[4] Hitachi Chem Res Ctr Inc, Irvine, CA 92617 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1002/adfm.200601077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A thermoresponsive hydrogel, poly(N-isopropylacrylamide) (poly(NIPAM)), is synthesized in situ within an oxidized porous Si template, and the nanocomposite material is characterized. Infiltration of the hydrogel into the interconnecting nanoscale pores of the porous SiO2 host is confirmed by scanning electron microscopy. The optical reflectivity spectrum of the nanocomposite hybrid displays Fabry-Perot fringes characteristic of thin film interference, enabling direct, real-time observation of the volume phase transition of the confined poly(NIPAM) hydrogel. Reversible optical reflectivity changes are observed to correlate with the temperature-dependent volume phase transition of the hydrogel, providing a new means of studying nanoscale confinement of responsive hydrogels. The confined hydrogel displays a swelling and shrinking response to changes in temperature that is significantly faster than that of the bulk hydrogel. The porosity and pore size of the SiO2 template, which are precisely controlled by the electrochemical synthesis parameters, strongly influence the extent and rate of changes in the reflectivity spectrum of the nanocomposite. The observed optical response is ascribed to changes in both the mechanical and the dielectric properties of the nanocomposite.
引用
收藏
页码:1153 / 1162
页数:10
相关论文
共 52 条
[1]   Engineering the chemistry and nanostructure of porous Silicon Fabry-Perot films for loading and release of a steroid [J].
Anglin, EJ ;
Schwartz, MP ;
Ng, VP ;
Perelman, LA ;
Sailor, MJ .
LANGMUIR, 2004, 20 (25) :11264-11269
[2]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[4]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[5]   Hydrogel-supported optical-microcavity sensors [J].
DeLouise, LA ;
Fauchet, PM ;
Miller, BL ;
Pentland, AA .
ADVANCED MATERIALS, 2005, 17 (18) :2199-2203
[6]   SYNTHESIS AND APPLICATION OF THERMALLY REVERSIBLE HETEROGELS FOR DRUG DELIVERY [J].
DONG, LC ;
HOFFMAN, AS .
JOURNAL OF CONTROLLED RELEASE, 1990, 13 (01) :21-31
[7]   Tuning the response and stability of thin film mesoporous silicon vapor sensors by surface modification [J].
Gao, T ;
Gao, J ;
Sailor, MJ .
LANGMUIR, 2002, 18 (25) :9953-9957
[8]   pH-sensitivity of fast responsive superporous hydrogels [J].
Gemeinhart, RA ;
Chen, J ;
Park, H ;
Park, K .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (12) :1371-1380
[9]  
GREGG SJ, 1982, ADSOPRTION SURFACE A
[10]   Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry.: 2.: Thermodynamic functions [J].
Grinberg, VY ;
Dubovik, AS ;
Kuznetsov, DV ;
Grinberg, NV ;
Grosberg, AY ;
Tanaka, T .
MACROMOLECULES, 2000, 33 (23) :8685-8692