A flux-splitting solver for shallow water equations with source terms

被引:16
作者
Rebollo, TC
Nieto, EDF
Mármol, MG
机构
[1] Univ Sevilla, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Univ Sevilla, Dept Matemat Aplicada 1, ETS Arquitectura, E-41080 Seville, Spain
关键词
finite-volume method; upwinding; shallow water; flux-splitting; source terms; HYPERBOLIC CONSERVATION-LAWS; SCHEMES;
D O I
10.1002/fld.436
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces a stable flux-splitting solver for one-dimensional (ID) shallow water equations. This solver is specifically designed to satisfy a strengthened consistency condition for stationary solutions that ensures the stability and accuracy of the scheme. It applies to channels with variable depth and width, including terms modelling friction at bottom and vertical walls. Some numerical tests by comparison to both analytical solutions and experimental measurements show the good performances of the scheme. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:23 / 55
页数:33
相关论文
共 15 条
[1]   A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS [J].
ALCRUDO, F ;
GARCIANAVARRO, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (06) :489-505
[2]   Runge-Kutta solutions of a hyperbolic conservation law with source term [J].
Aves, MA ;
Griffiths, DF ;
Higham, DJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) :20-38
[3]   Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes [J].
Bermudez, A ;
Dervieux, A ;
Desideri, JA ;
Vazquez, ME .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 155 (1-2) :49-72
[4]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[5]  
BRUFAU P, 2000, THESIS U ZARAGOZA
[6]   Efficient construction of high-resolution TVD conservative schemes for equations with source terms:: application to shallow water flows [J].
Burguete, J ;
García-Navarro, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 37 (02) :209-248
[7]  
CENDON MEV, 1994, THESIS U SANTIAGO CO
[8]  
CHACON T, 1998, APPL NUMERICAL MATH, V26, P435
[9]  
Godlewski E., 1996, APPL MATH SCI
[10]  
Godlewski E., 1991, HYPERBOLIC SYSTEMS C, P252