Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes

被引:161
作者
Bermudez, A
Dervieux, A
Desideri, JA
Vazquez, ME
机构
[1] Inst Natl Rech Informat & Automat, F-06560 Valbonne, France
[2] Dept Matemat Aplicada, Santiago De Compostela 15706, Spain
关键词
D O I
10.1016/S0045-7825(97)85625-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, certain well-known upwind schemes for hyperbolic equations are extended to solve the two-dimensional Saint-Venant (or shallow water) equations. We consider unstructured meshes and a new type of finite volume to obtain a suitable treatment of the boundary conditions. The source term involving the gradient of the depth is upwinded in a similar way as the flux terms. The resulting schemes are compared in terms of a conservation property. For the time discretization we consider both explicit and implicit schemes. Finally, we present the numerical results for tidal hows in the Pontevedra ria, Galicia, Spain. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:49 / 72
页数:24
相关论文
共 19 条
[1]   A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS [J].
ALCRUDO, F ;
GARCIANAVARRO, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (06) :489-505
[2]  
[Anonymous], RAIRO R
[3]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[4]   SOLVING SHALLOW-WATER EQUATIONS BY A MIXED IMPLICIT FINITE-ELEMENT METHOD [J].
BERMUDEZ, A ;
RODRIGUEZ, C ;
VILAR, MA .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (01) :79-97
[5]   SEMI-IMPLICIT FINITE-DIFFERENCE METHODS FOR THE 2-DIMENSIONAL SHALLOW-WATER EQUATIONS [J].
CASULLI, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 86 (01) :56-74
[6]  
Dervieux A., 1993, Compressible flow solvers using unstructured grids
[7]   EXPLICIT METHODS FOR 2-D TRANSIENT FREE-SURFACE FLOWS [J].
FENNEMA, RJ ;
CHAUDHRY, MH .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1990, 116 (08) :1013-1034
[8]  
GAMBOLATI G, 1990, COMPUTATIONAL METHOD
[9]   APPROXIMATE RIEMANN SOLUTIONS OF THE SHALLOW-WATER EQUATIONS [J].
GLAISTER, P .
JOURNAL OF HYDRAULIC RESEARCH, 1988, 26 (03) :293-306
[10]   AN EFFICIENT NUMERICAL SCHEME FOR THE 2-DIMENSIONAL SHALLOW-WATER EQUATIONS USING ARITHMETIC AVERAGING [J].
GLAISTER, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (01) :97-117