Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti

被引:79
作者
Harrison, J
Jamet, A
Muglia, CI
Van de Sype, G
Aguilar, OM
Puppo, A
Frendo, P
机构
[1] Univ Nice, CNRS, UMR, INRA, F-06903 Sophia Antipolis, France
[2] Univ Nacl La Plata, Fac Ciencias Exactas, Inst Bioquim & Biol Mol, La Plata, Argentina
关键词
D O I
10.1128/JB.187.1.168-174.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Rhizobia form a symbiotic relationship with plants of the legume family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We have examined the importance of glutathione (GSH) during free-living growth and symbiosis of Sinorhizobium meliloti. An S. meliloti mutant strain (SmgshA) which is unable to synthesize GSH due to a gene disruption in gshA, encoding the enzyme for the first step in the biosynthesis of GSH, was unable to grow under nonstress conditions, precluding any nodulation. In contrast, an S. meliloti strain (SmgshB) with gshB, encoding the enzyme involved in the second step in GSH synthesis, deleted was able to grow, indicating that gamma-glutamylcysteine, the dipeptide intermediate, can partially substitute for GSH. However, the SmgshB strain showed a delayed-nodulation phenotype coupled to a 75% reduction in the nitrogen fixation capacity. This phenotype was linked to abnormal nodule development. Both the SmgshA and SmgshB mutant strains exhibited higher catalase activity than the wild-type S. meliloti strain, suggesting that both mutant strains are under oxidative stress. Taken together, these results show that GSH plays a critical role in the growth of S. meliloti and during its interaction with the plant partner.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 31 条
[1]   Transcriptome analysis of Sinorhizobium meliloti during symbiosis -: art. no. R15 [J].
Ampe, F ;
Kiss, E ;
Sabourdy, F ;
Batut, J .
GENOME BIOLOGY, 2003, 4 (02)
[2]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[3]   EFFECTS OF MOLECULAR-OXYGEN ON DETECTION OF SUPEROXIDE RADICAL WITH NITROBLUE TETRAZOLIUM AND ON ACTIVITY STAINS FOR CATALASE [J].
CLARE, DA ;
DUONG, MN ;
DARR, D ;
ARCHIBALD, F ;
FRIDOVICH, I .
ANALYTICAL BIOCHEMISTRY, 1984, 140 (02) :532-537
[4]  
Copley SD, 2002, GENOME BIOL, V3
[5]   2ND SYMBIOTIC MEGAPLASMID IN RHIZOBIUM-MELILOTI CARRYING EXOPOLYSACCHARIDE AND THIAMINE SYNTHESIS GENES [J].
FINAN, TM ;
KUNKEL, B ;
DEVOS, GF ;
SIGNER, ER .
JOURNAL OF BACTERIOLOGY, 1986, 167 (01) :66-72
[6]   Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis [J].
Frendo, P ;
Gallesi, D ;
Turnbull, R ;
Van de Sype, G ;
Hérouart, D ;
Puppo, A .
PLANT JOURNAL, 1999, 17 (02) :215-219
[7]   CONSTRUCTION OF A BROAD HOST RANGE COSMID CLONING VECTOR AND ITS USE IN THE GENETIC-ANALYSIS OF RHIZOBIUM MUTANTS [J].
FRIEDMAN, AM ;
LONG, SR ;
BROWN, SE ;
BUIKEMA, WJ ;
AUSUBEL, FM .
GENE, 1982, 18 (03) :289-296
[8]   The composite genome of the legume symbiont Sinorhizobium meliloti [J].
Galibert, F ;
Finan, TM ;
Long, SR ;
Pühler, A ;
Abola, P ;
Ampe, F ;
Barloy-Hubler, F ;
Barnett, MJ ;
Becker, A ;
Boistard, P ;
Bothe, G ;
Boutry, M ;
Bowser, L ;
Buhrmester, J ;
Cadieu, E ;
Capela, D ;
Chain, P ;
Cowie, A ;
Davis, RW ;
Dréano, S ;
Federspiel, NA ;
Fisher, RF ;
Gloux, S ;
Godrie, T ;
Goffeau, A ;
Golding, B ;
Gouzy, J ;
Gurjal, M ;
Hernandez-Lucas, I ;
Hong, A ;
Huizar, L ;
Hyman, RW ;
Jones, T ;
Kahn, D ;
Kahn, ML ;
Kalman, S ;
Keating, DH ;
Kiss, E ;
Komp, C ;
Lalaure, V ;
Masuy, D ;
Palm, C ;
Peck, MC ;
Pohl, TM ;
Portetelle, D ;
Purnelle, B ;
Ramsperger, U ;
Surzycki, R ;
Thébault, P ;
Vandenbol, M .
SCIENCE, 2001, 293 (5530) :668-672
[9]  
GLAZEBROOK J, 1991, METHOD ENZYMOL, V204, P398
[10]   Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine [J].
Grant, CM ;
MacIver, FH ;
Dawes, IW .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (09) :1699-1707