Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance

被引:192
作者
Quan, Ruidang [1 ,2 ,3 ]
Hu, Shoujing [1 ,4 ]
Zhang, Zhili [4 ]
Zhang, Haiwen [1 ,2 ,3 ]
Zhang, Zhijin [1 ,2 ,3 ]
Huang, Rongfeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
[2] Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[3] Natl Ctr Plant Gene Res Beijing, Beijing 100081, Peoples R China
[4] Hainan Acad Agr Sci, Haikou 571000, Greece
基金
美国国家科学基金会;
关键词
rice; drought tolerance; TSRF1; REGULATES PATHOGEN RESISTANCE; ELEMENT-BINDING FACTORS; ABSCISIC-ACID; GCC-BOX; ABIOTIC STRESS; APETALA2-LIKE GENE; ENHANCES TOLERANCE; LOW-TEMPERATURE; ETHYLENE; ARABIDOPSIS;
D O I
10.1111/j.1467-7652.2009.00492.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
P>One of the major limitations in rice production is a shortage of water. Conventional breeding as well as emerging genetic engineering methods may be used to improve plant stress tolerance. Some transcription factors regulating stress responsive genes have become important target genes for improving plant drought tolerance. Previously, we have shown that a tomato ethylene response factor (ERF) protein TSRF1 that binds to GCC box in the promoters of pathogenesis-related genes positively regulates pathogen resistance in tomato and tobacco, but negatively regulates osmotic response in tobacco. Here, we further report the ability of TSRF1 to regulate osmotic and drought responses in monocot rice. TSRF1 improves the osmotic and drought tolerance of rice seedlings without growth retardation, as determined by physiological analyses of root and leaf growth, leaf water loss and survival rate under stress. In addition, the amounts of proline and soluble sugars in transgenic rice lines increase by 30%-60% compared to those in wild-type plants. Moreover, TSRF1 activates the expression of a putative rice abscisic acid (ABA) synthesis gene SDR, resulting in enhanced ABA sensitivity in transgenic rice. TSRF1 also increases the expression of MYB, MYC and proline synthesis and photosynthesis-related genes, probably by binding to dehydration responsive element and GCC boxes in promoters of the target genes. These results demonstrate that TSRF1 enhances the osmotic and drought tolerance of rice by modulating the increase in stress responsive gene expression.
引用
收藏
页码:476 / 488
页数:13
相关论文
共 63 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J].
Abe, H ;
YamaguchiShinozaki, K ;
Urao, T ;
Iwasaki, T ;
Hosokawa, D ;
Shinozaki, K .
PLANT CELL, 1997, 9 (10) :1859-1868
[3]   A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J].
Allen, MD ;
Yamasaki, K ;
Ohme-Takagi, M ;
Tateno, M ;
Suzuki, M .
EMBO JOURNAL, 1998, 17 (18) :5484-5496
[4]   The ethylene signaling pathway [J].
Alonso, JM ;
Stepanova, AN .
SCIENCE, 2004, 306 (5701) :1513-1515
[5]   AP2-ERF transcription factors mediate nod factor-dependent mt ENOD11 activation in root hairs via a novel cis-regulatory motif [J].
Andriankaja, Andry ;
Boisson-Demier, Aurelien ;
Frances, Lisa ;
Sauviac, Laurent ;
Jauneau, Alain ;
Barker, David G. ;
de Carvalho-Niebel, Fernanda .
PLANT CELL, 2007, 19 (09) :2866-2885
[6]  
Bailey TL., 1994, Proc Int Conf Intel Syst Mol Biol, V2, P28
[7]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[8]   Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects [J].
Bhatnagar-Mathur, Pooja ;
Vadez, V. ;
Sharma, Kiran K. .
PLANT CELL REPORTS, 2008, 27 (03) :411-424
[9]   Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth [J].
Boutilier, K ;
Offringa, R ;
Sharma, VK ;
Kieft, H ;
Ouellet, T ;
Zhang, LM ;
Hattori, J ;
Liu, CM ;
van Lammeren, AAM ;
Miki, BLA ;
Custers, JBM ;
Campagne, MMV .
PLANT CELL, 2002, 14 (08) :1737-1749
[10]   Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress [J].
Cao, Yifei ;
Song, Fengming ;
Goodman, Robert M. ;
Zheng, Zhong .
JOURNAL OF PLANT PHYSIOLOGY, 2006, 163 (11) :1167-1178