Pathogenic staphylococci are now regarded in the scientific community as antibiotic resistant 'superbugs' because they have an amazing capacity to acquire resistance traits. Surprisingly, antibiotic development has decelerated. Promising targets for drug development are enzymes involved in the biosynthesis of cell envelope structures such as peptidoglycan, teichoic acids, membrane lipids, or cell wall associated adhesins. Compounds that inactivate or neutralize the most aggressive toxins such as the superantigens and the pore forming toxins have also been considered. In the past decade, global regulatory systems have been studied that contribute to virulence and might be candidates for target development. Targets that are particularly promising include all enzymatic reactions that are unique to bacteria and that are involved in central metabolism, such as methionine-tRNA(fMet) formyltransferase or the peptide deformylase, which have been successfully used for designing new inhibitors. There are also several known antibiotics that have roused new interest especially if they are active against multi-resistant staphylococci. Various cell wall components are promising candidates for active and passive immunization strategies such as capsule, slime, teichoic acids or cell wall bound adhesins. Several new targets for drugs or vaccines will arise from the functional analysis of the staphylococcal genomes that contain many hitherto unknown targets.