How Does the Reductase Help To Regulate the Catalytic Cycle of Cytochrome P450 3A4 Using the Conserved Water Channel?

被引:48
作者
Fishelovitch, Dan [1 ]
Shaik, Sason [2 ,3 ]
Wolfson, Haim J. [4 ]
Nussinov, Ruth [1 ,5 ]
机构
[1] Tel Aviv Univ, Sackler Fac Med, Sackler Inst Mol Med, Dept Human Genet, IL-69978 Tel Aviv, Israel
[2] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Lise Meitner Minerva Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel
[4] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[5] NCI, SAIC Frederick Inc, Ctr Canc Res Nanobiol Program, Frederick, MD 21702 USA
基金
美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS; BINDING-SITE; SUBSTRATE-BINDING; CRYSTAL-STRUCTURE; SIDE-CHAIN; P450CAM; MECHANISM; IDENTIFICATION; RESOLUTION; PROTEINS;
D O I
10.1021/jp101894k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water molecules play a major role in the P450 catalytic cycle. Here, we locate the preferred water pathways and their gating mechanisms for the human cytochrome P450 3A4 (CYP3A4) and elucidate the role of the cytochrome P450 reductase (CPR) in turning on and activating these water channels. We perform explicit solvent molecular dynamic simulations of CYP3A4, unbound and bound to two substrates, and with and without the flavin mononucleotide (FMN)-binding domain of CPR. We observe in/out passage of water molecules via a water-specific and conserved channel (aqueduct) located between the active site and the heme proximal side. We find that the aqueduct gating mechanism is mediated by R375, the conserved arginine that salt bridges with the heme 7-propionate. When R375 rotates, it opens the aqueduct and establishes a connection between a cluster of active site water molecules network and the bulk solvent, The aqueduct region overlaps with the CPR binding-site to CYP3A4. Indeed, we find that when the RAN domain of CPR binds to CYP3A4, the aqueduct fully opens up, thereby allowing a flow of water molecules. The aqueduct's opening can permit proton transfer, shuttling the protons to the active site through ordered water molecules. In addition, the expulsion of water molecules via the aqueduct contributes to substrate binding. As such, the CPR binding has a function: it triggers the aqueduct's opening and thereby enables a proton shuttle pathway, which is needed for the dioxygen activation. This mechanism could be a general paradigm in P450s.
引用
收藏
页码:5964 / 5970
页数:7
相关论文
共 55 条
[1]   How is the Reactivity of Cytochrome P450cam Affected by Thr252X Mutation? A QM/MM Study for X = Serine, Valine, Alanine, Glycine [J].
Altarsha, Muhannad ;
Benighaus, Tobias ;
Kumar, Devesh ;
Thiel, Walter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (13) :4755-4763
[2]   Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes [J].
Altun, A ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (03) :1268-1280
[3]   ConSeq: the identification of functionally and structurally important residues in protein sequences [J].
Berezin, C ;
Glaser, F ;
Rosenberg, J ;
Paz, I ;
Pupko, T ;
Fariselli, P ;
Casadio, R ;
Ben-Tal, N .
BIOINFORMATICS, 2004, 20 (08) :1322-1324
[4]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1977, 80 (02) :319-324
[5]   Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase [J].
Bridges, A ;
Gruenke, L ;
Chang, YT ;
Vakser, IA ;
Loew, G ;
Waskell, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (27) :17036-17049
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   The ins and outs of cytochrome P450s [J].
Cojocaru, Vlad ;
Winn, Peter J. ;
Wade, Rebecca C. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2007, 1770 (03) :390-401
[8]   A molecular mechanics force field for biologically important sterols [J].
Cournia, Z ;
Smith, JC ;
Ullmann, GM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (13) :1383-1399
[9]   Hydroxylation of camphor by-reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes [J].
Davydov, R ;
Makris, TM ;
Kofman, V ;
Werst, DE ;
Sligar, SG ;
Hoffman, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (07) :1403-1415
[10]   Structural basis for ligand promiscuity in cytochrome P450 3A4 [J].
Ekroos, Marika ;
Sjogren, Tove .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (37) :13682-13687