Quadratic variations and estimation of the local Holder index of a Gaussian process

被引:243
作者
Istas, J
Lang, G
机构
[1] UNIV TOULOUSE 3,LAB STAT & PROBABIL,UA 745 CNRS,F-31062 TOULOUSE,FRANCE
[2] ECOLE NATL GENIE RURAL EAUX & FORETS,F-75732 PARIS 15,FRANCE
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1997年 / 33卷 / 04期
关键词
D O I
10.1016/S0246-0203(97)80099-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the convergence of a generalisation of the quadratic variations of a Gaussian process. We build a convergent estimator of the local Holder index of the sample paths and prove a central limit theorem.
引用
收藏
页码:407 / 436
页数:30
相关论文
共 24 条
[1]  
ADLER J, 1990, LECT NOTES MONOGRAPH, V12
[2]   UNIFORM QUADRATIC VARIATION FOR GAUSSIAN-PROCESSES [J].
ADLER, RJ ;
PYKE, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 48 (02) :191-209
[3]  
AZAIS JM, 1994, EXACT ERROR EVALUATI
[4]  
BRUGIERE P, 1991, CR ACAD SCI I-MATH, V312, P999
[5]  
Cramer H., 1967, Stationary and Related Stochastic Processes. Sample Function. Properties and Their Applications
[6]  
Csorgo M., 1981, Probability and Mathematical Statistics
[7]  
Dacunha-Castelle D., 1983, PROBABILITES STAT, V2
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[9]  
GENONCATALOT V, 1992, SCAND J STAT, V19, P317
[10]  
Grenander U., 1981, ABSTRACT INFERENCE