Structural identifiability of non-linear systems using linear/non-linear splitting

被引:17
作者
Chapman, MJ [1 ]
Godfrey, KR
Chappell, MJ
Evans, ND
机构
[1] Coventry Univ, Sch MIS Maths, Coventry CV1 5FB, W Midlands, England
[2] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1080/0020717031000067420
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the local state space isomorphism theorem for non-linear systems is used to analyse structural identifiability. In particular it is shown that, under certain restrictions, it is possible to perform a linear/non-linear splitting of the analysis. The relatively straightforward linear analysis then restricts the class of local diffeomorphic transformations as given by the non-linear state space isomorphism theorem. This, in turn, leads to possible simplifications to the subsequent non-linear analysis by providing an efficient means for calculating the local state diffeomorphism.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 2013, Nonlinear control systems
[2]  
[Anonymous], IDENTIFIABILITY PARA
[3]  
BELLMAN R, 1970, Mathematical Biosciences, V7, P329, DOI 10.1016/0025-5564(70)90132-X
[4]   Nonlinear compartmental model indistinguishability [J].
Chapman, MJ ;
Godfrey, KR .
AUTOMATICA, 1996, 32 (03) :419-422
[5]   GLOBAL IDENTIFIABILITY OF THE PARAMETERS OF NONLINEAR-SYSTEMS WITH SPECIFIED INPUTS - A COMPARISON OF METHODS [J].
CHAPPELL, MJ ;
GODFREY, KR ;
VAJDA, S .
MATHEMATICAL BIOSCIENCES, 1990, 102 (01) :41-73
[6]   STRUCTURAL IDENTIFIABILITY OF THE PARAMETERS OF A NONLINEAR BATCH REACTOR MODEL [J].
CHAPPELL, MJ ;
GODFREY, KR .
MATHEMATICAL BIOSCIENCES, 1992, 108 (02) :241-251
[7]   Identifiability of uncontrolled nonlinear rational systems [J].
Evans, ND ;
Chapman, MJ ;
Chappell, MJ ;
Godfrey, KR .
AUTOMATICA, 2002, 38 (10) :1799-1805
[8]   IDENTIFIABILITY AND INDISTINGUISHABILITY OF NONLINEAR PHARMACOKINETIC MODELS [J].
GODFREY, KR ;
CHAPMAN, MJ ;
VAJDA, S .
JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1994, 22 (03) :229-251
[9]  
Heck A., 1996, INTRO MAPLE
[10]   NONLINEAR CONTROLLABILITY AND OBSERVABILITY [J].
HERMANN, R ;
KRENER, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :728-740