The intrinsic coupling in integrable quantum field theories

被引:18
作者
Balog, J [1 ]
Niedermaier, M
Niedermayer, F
Patrascioiu, A
Seiler, E
Weisz, P
机构
[1] Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary
[2] Univ Pittsburgh, Dept Phys, Pittsburgh, PA 15260 USA
[3] Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland
[4] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[5] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
基金
美国国家科学基金会;
关键词
integrable systems; Bethe ansatz; form factors; Ising model; XY-model; O(3) sigma-model;
D O I
10.1016/S0550-3213(00)00277-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The intrinsic 4-point coupling, defined in terms of a truncated 4-point function at zero momentum, provides a well-established measure for the interaction strength of a QFT. We show that this coupling can be computed non-perturbatively and to high accuracy from the form factors of an (integrable) QFT. The technique is illustrated and tested with the Ising model, the XY-model and the O(3) nonlinear sigma-model. The results are compared to those from high precision lattice simulations. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:614 / 670
页数:57
相关论文
共 43 条
[11]   On the evaluation of universal non-perturbative constants in O(N) sigma models [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICS LETTERS B, 1997, 402 (1-2) :141-146
[12]   Strong-coupling analysis of two-dimensional O(N) sigma models with N<=2 on square, triangular, and honeycomb lattices [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW B, 1996, 54 (10) :7301-7317
[13]   Strong-coupling analysis of two-dimensional O(N) a models with N>=3 on square, triangular, and honeycomb lattices [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW D, 1996, 54 (02) :1782-1808
[14]   Four-point renormalized coupling constant in O(N) models [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
NUCLEAR PHYSICS B, 1996, 459 (1-2) :207-242
[15]   Universal amplitude ratios in the two-dimensional Ising model [J].
Delfino, G .
PHYSICS LETTERS B, 1998, 419 (1-4) :291-295
[16]   A MONTE-CARLO SIMULATION WITH AN IMPROVED ACTION FOR THE 0(3) NON-LINEAR SIGMA-MODEL [J].
FALCIONI, M ;
MARTINELLI, G ;
PACIELLO, ML ;
TAGLIENTI, B ;
PARISI, G .
NUCLEAR PHYSICS B, 1983, 225 (03) :313-325
[17]  
HASENBUSCH M, HEPLAT9408019
[18]   PERFECT LATTICE ACTION FOR ASYMPTOTICALLY FREE THEORIES [J].
HASENFRATZ, P ;
NIEDERMAYER, F .
NUCLEAR PHYSICS B, 1994, 414 (03) :785-814
[19]   THE EXACT MASS GAP OF THE O(3) AND O(4) NONLINEAR SIGMA-MODELS IN D=2 [J].
HASENFRATZ, P ;
MAGGIORE, M ;
NIEDERMAYER, F .
PHYSICS LETTERS B, 1990, 245 (3-4) :522-528
[20]  
Karowski M., 1980, Field Theoretical Methods in Particle Physics. NATO Advanced Study Institute on Field Theoretical Methods in Particle Physics, P307