The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density

被引:309
作者
Balda, MS
Garrett, MD
Matter, K
机构
[1] UCL, Div Cell Biol, Inst Ophthalmol, London EC1V 9EL, England
[2] Inst Canc Res, Canc Res UK, Ctr Canc Therapeut, Sutton SM2 5NG, Surrey, England
基金
英国惠康基金;
关键词
polarized epithelia; tight junctions; cell cycle; MAGUK; CDK4;
D O I
10.1083/jcb.200210020
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1-associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction-associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1-based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 52 条
[1]   Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression [J].
Assoian, RK ;
Schwartz, MA .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (01) :48-53
[2]   Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein [J].
Balda, MS ;
Whitney, JA ;
Flores, C ;
Gonzalez, S ;
Cereijido, M ;
Matter, K .
JOURNAL OF CELL BIOLOGY, 1996, 134 (04) :1031-1049
[3]  
Baldini A, 2000, ZEI STUD EU ECON LAW, V2, P19
[4]   Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression [J].
Bargou, RC ;
Jurchott, K ;
Wagener, C ;
Bergmann, S ;
Metzner, S ;
Bommert, K ;
Mapara, MY ;
Winzer, KJ ;
Dietel, M ;
Dorken, B ;
Royer, HD .
NATURE MEDICINE, 1997, 3 (04) :447-450
[5]   Cadherins and catenins: Role in signal transduction and tumor progression [J].
Behrens, J .
CANCER AND METASTASIS REVIEWS, 1999, 18 (01) :15-30
[6]  
Benais-Pont G., 2001, TIGHT JUNCTIONS, P367
[7]  
Cao ZY, 2002, INVEST OPHTH VIS SCI, V43, P2897
[8]   Molecular physiology and pathophysiology of tight junctions - I. Biogenesis of tight junctions and epithelial polarity [J].
Cereijido, M ;
Shoshani, L ;
Contreras, RG .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2000, 279 (03) :G477-G482
[9]   Role of tight junctions in establishing and maintaining cell polarity [J].
Cereijido, M ;
Valdés, J ;
Shoshani, L ;
Contreras, RG .
ANNUAL REVIEW OF PHYSIOLOGY, 1998, 60 :161-177
[10]  
Chen Kuang Yu, 1997, Frontiers in Bioscience (online), V2, pD417