Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane)

被引:177
作者
Chen, Mengting [1 ]
Zhang, Ling [1 ]
Duan, Shasha [1 ]
Jing, Shilong [1 ]
Jiang, Hao [1 ]
Li, Chunzhong [1 ]
机构
[1] E China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER NANOCOMPOSITES; GRAPHENE; NANOTUBES; FABRICATION; COMPOSITE; AEROGEL; MATRIX;
D O I
10.1002/adfm.201401886
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, a novel and facile method is reported for manufacturing a new stretchable conductive material that integrates a hybrid three dimensional (3D) carbon nanotube (CNT)/reduced graphene oxide (rGO) network with a porous poly(dimethylsiloxane) (p-PDMS) elastomer (pPCG). This reciprocal architecture not only alleviates the aggregation of carbon nanofillers but also significantly improves the conductivity of pPCG under large strains. Consequently, the pPCG exhibits high electrical conductivity with a low nanofiller loading (27 S m(-1) with 2 wt% CNTs/graphene) and a notable retention capability after bending and stretching. The simulation of the mechanical properties of the p-PDMS model demonstrates that an extremely large applied strain (epsilon(appl)) can be accommodated through local rotations and bending of cell walls. Thus, after a slight decrease, the conductivity of pPCG can continue to remain constant even as the strain increases to 50%. In general, this architecture of pPCG with a combination of a porous polymer substrate and 3D carbon nanofiller network possesses considerable potential for numerous applications in next-generation stretchable electronics.
引用
收藏
页码:7548 / 7556
页数:9
相关论文
共 37 条
[1]   PMMA/graphite nanosheets composite and its conducting properties [J].
Chen, GH ;
Weng, WG ;
Wu, DJ ;
Wu, CL .
EUROPEAN POLYMER JOURNAL, 2003, 39 (12) :2329-2335
[2]  
Chen M., 2014, NANOSCALE
[3]   Highly conductive and stretchable polymer composites based on graphene/MWCNT network [J].
Chen, Mengting ;
Tao, Tao ;
Zhang, Ling ;
Gao, Wei ;
Li, Chunzhong .
CHEMICAL COMMUNICATIONS, 2013, 49 (16) :1612-1614
[4]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[5]  
Gibson L. J., 1999, CELLULAR SOLIDS STRU, P30
[6]  
Grondin G., 1998, J CAN CHIROPR ASS, V42, P107
[7]   High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers [J].
Grossiord, Nadia ;
Loos, Joachim ;
van Laake, Lucas ;
Maugey, Maryse ;
Zakri, Cecile ;
Koning, Cor E. ;
Hart, A. John .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (20) :3226-3234
[8]   Transparent, Flexible Conducting Hybrid Multi layer Thin Films of Multiwalled Carbon Nanotubes with Graphene Nanosheets [J].
Hong, Tae-Keun ;
Lee, Dong Wook ;
Choi, Hyun Jung ;
Shin, Hyeon Suk ;
Kim, Byeong-Su .
ACS NANO, 2010, 4 (07) :3861-3868
[9]   Ultralight and Highly Compressible Graphene Aerogels [J].
Hu, Han ;
Zhao, Zongbin ;
Wan, Wubo ;
Gogotsi, Yury ;
Qiu, Jieshan .
ADVANCED MATERIALS, 2013, 25 (15) :2219-2223
[10]   Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets [J].
Kalaitzidou, Kyriaki ;
Fukushima, Hiroyuki ;
Drzal, Lawrence T. .
CARBON, 2007, 45 (07) :1446-1452