Temperature-dependent nucleation rate constants and freezing behavior of submicron nitric acid dihydrate aerosol particles under stratospheric conditions

被引:45
作者
Bertram, AK [1 ]
Sloan, JJ [1 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1029/97JD02967
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The freezing of a submicron-sized aerosol composed of H2O and HNO3 in a precise 2:1 concentration ratio has been measured using Fourier transform infrared extinction spectroscopy. The measurements were carried out in a flow tube operating at temperatures and pressures appropriate to the polar stratosphere. On the timescale of this measurement, about 15 s, detectable nucleation occurred at 179 +/- 1.6 K. Ten percent of the sample was frozen after 15 s at a temperature of 178.8 K; 50% was frozen at 177.5 K, and 90% was frozen at 175.8 K. Using the known (constant) aerosol flow velocity, the nucleation rate constant was obtained from the freezing point measurements. Values of this rate constant are reported over the temperature range between 176 K and 179 K. In this range the freezing temperature is in excellent agreement with that measured by Barton er al. [1993], and the temperature dependence of the nucleation rate constant agrees well with that calculated using the method of MacKenzie et al. [1997]. It does not agree with that reported by Tisdale et al. [1997]. Extrapolation of the rates indicate that nitric acid dihydrate nucleation from liquid aerosol droplets having a 2:1 H2O:HNO3 composition would occur on the stratospherically relevant timescales of 1 hour and 1 day at temperatures of 183 and 185 K, respectively.
引用
收藏
页码:3553 / 3561
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 1978, Microphysics of Clouds and Precipitation, DOI 10.1007/978-94-009-9905-3
[2]   FTIR STUDIES OF LOW-TEMPERATURE SULFURIC-ACID AEROSOLS [J].
ANTHONY, SE ;
TISDALE, RT ;
DISSELKAMP, RS ;
TOLBERT, MA ;
WILSON, JC .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (09) :1105-1108
[3]   INFRARED-SPECTRA OF LARGE ACID HYDRATE CLUSTERS - FORMATION CONDITIONS OF SUBMICRON PARTICLES OF HNO3.2H2O AND HNO3.3H2O [J].
BARTON, N ;
ROWLAND, B ;
DEVLIN, JP .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (22) :5848-5851
[4]   Mechanisms and temperatures for the freezing of sulfuric acid aerosols measured by FTIR extinction spectroscopy [J].
Bertram, AK ;
Patterson, DD ;
Sloan, JJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (06) :2376-2383
[5]   MULTIWAVELENGTH LIDAR MEASUREMENTS OF STRATOSPHERIC AEROSOLS ABOVE SPITSBERGEN DURING WINTER 1992 93 [J].
BEYERLE, G ;
NEUBER, R ;
SCHREMS, O ;
WITTROCK, F ;
KNUDSEN, B .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (01) :57-60
[6]   AIRBORNE LIDAR OBSERVATIONS IN THE WINTERTIME ARCTIC STRATOSPHERE - POLAR STRATOSPHERIC CLOUDS [J].
BROWELL, EV ;
BUTLER, CF ;
ISMAIL, S ;
ROBINETTE, PA ;
CARTER, AF ;
HIGDON, NS ;
TOON, OB ;
SCHOEBERL, MR ;
TUCK, AF .
GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (04) :385-388
[7]   Infrared spectroscopy of sulfuric acid water aerosols: Freezing characteristics [J].
Clapp, ML ;
Niedziela, RF ;
Richwine, LJ ;
Dransfield, T ;
Miller, RE ;
Worsnop, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D7) :8899-8907
[8]   Crystallization kinetics of nitric acid dihydrate aerosols [J].
Disselkamp, RS ;
Anthony, SE ;
Prenni, AJ ;
Onasch, TB ;
Tolbert, MA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (21) :9127-9137
[9]   PARTICLE-SIZE DISTRIBUTIONS IN ARCTIC POLAR STRATOSPHERIC CLOUDS, GROWTH AND FREEZING OF SULFURIC-ACID DROPLETS, AND IMPLICATIONS FOR CLOUD FORMATION [J].
DYE, JE ;
BAUMGARDNER, D ;
GANDRUD, BW ;
KAWA, SR ;
KELLY, KK ;
LOEWENSTEIN, M ;
FERRY, GV ;
CHAN, KR ;
GARY, BL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D8) :8015-8034
[10]   METASTABLE PHASES IN POLAR STRATOSPHERIC AEROSOLS [J].
FOX, LE ;
WORSNOP, DR ;
ZAHNISER, MS ;
WOFSY, SC .
SCIENCE, 1995, 267 (5196) :351-355