Membrane translocation of mitochondrially coded Cox2p: Distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p

被引:161
作者
He, SC [1 ]
Fox, TD [1 ]
机构
[1] CORNELL UNIV, GENET & DEV SECT, ITHACA, NY 14853 USA
关键词
D O I
10.1091/mbc.8.8.1449
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To study in vivo the export of mitochondrially synthesized protein from the matrix to the intermembrane space, we have fused a synthetic mitochondrial gene, AXG8''', to the Saccharomyces cerevisiae COX2 gene in mitochondrial DNA. The Arg8(m)p moiety was translocated through the inner membrane when fused to the Cox2p C terminus by a mechanism dependent on topogenic information at least partially contained within the exported Cox2p C-terminal tail. The pre-Cox2p leader peptide did not signal translocation. Export of the Cox2p C-terminal tail, but not the N-terminal tail, was dependent on the inner membrane potential. The mitochondrial export system does not closely resemble the bacterial Sec translocase. However, normal translocation of both exported domains of Cox2p was defective in cells lacking the widely conserved inner membrane protein Oxa1p.
引用
收藏
页码:1449 / 1460
页数:12
相关论文
共 53 条
[1]   The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase [J].
Altamura, N ;
Capitanio, N ;
Bonnefoy, N ;
Papa, S ;
Dujardin, G .
FEBS LETTERS, 1996, 382 (1-2) :111-115
[2]   COMPLETE SEQUENCE OF BOVINE MITOCHONDRIAL-DNA - CONSERVED FEATURES OF THE MAMMALIAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
DEBRUIJN, MHL ;
COULSON, AR ;
EPERON, IC ;
SANGER, F ;
YOUNG, IG .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 156 (04) :683-717
[3]   MEMBRANE-PROTEIN TOPOLOGY - EFFECTS OF DELTA-MU(H)+ ON THE TRANSLOCATION OF CHARGED RESIDUES EXPLAIN THE POSITIVE INSIDE RULE [J].
ANDERSSON, H ;
VONHEIJNE, G .
EMBO JOURNAL, 1994, 13 (10) :2267-2272
[4]  
[Anonymous], 1996, Translational Control
[5]   PET1402, A NUCLEAR GENE REQUIRED FOR PROTEOLYTIC PROCESSING OF CYTOCHROME-OXIDASE SUBUNIT-2 IN YEAST [J].
BAUER, M ;
BEHRENS, M ;
ESSER, K ;
MICHAELIS, G ;
PRATJE, E .
MOLECULAR & GENERAL GENETICS, 1994, 245 (03) :272-278
[6]   MITOCHONDRIAL INNER MEMBRANE PROTEASE-1 OF SACCHAROMYCES-CEREVISIAE SHOWS SEQUENCE SIMILARITY TO THE ESCHERICHIA-COLI LEADER PEPTIDASE [J].
BEHRENS, M ;
MICHAELIS, G ;
PRATJE, E .
MOLECULAR & GENERAL GENETICS, 1991, 228 (1-2) :167-176
[7]   CLONING OF A HUMAN GENE INVOLVED IN CYTOCHROME-OXIDASE ASSEMBLY BY FUNCTIONAL COMPLEMENTATION OF AN OXA1(-) MUTATION IN SACCHAROMYCES-CEREVISIAE [J].
BONNEFOY, N ;
KERMORGANT, M ;
GROUDINSKY, O ;
MINET, M ;
SLONIMSKI, PP ;
DUJARDIN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (25) :11978-11982
[8]   OXA1, A SACCHAROMYCES-CEREVISIAE NUCLEAR GENE WHOSE SEQUENCE IS CONSERVED FROM PROKARYOTES TO EUKARYOTES CONTROLS CYTOCHROME-OXIDASE BIOGENESIS [J].
BONNEFOY, N ;
CHALVET, F ;
HAMEL, P ;
SLONIMSKI, PP ;
DUJARDIN, G .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 239 (02) :201-212
[9]   THE TRANSLOCATION OF NEGATIVELY CHARGED RESIDUES ACROSS THE MEMBRANE IS DRIVEN BY THE ELECTROCHEMICAL POTENTIAL - EVIDENCE FOR AN ELECTROPHORESIS-LIKE MEMBRANE TRANSFER MECHANISM [J].
CAO, GQ ;
KUHN, A ;
DALBEY, RE .
EMBO JOURNAL, 1995, 14 (05) :866-875
[10]  
CLARKSON GHD, 1989, J BIOL CHEM, V264, P10114