Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium

被引:84
作者
Fernandez-Lorente, Gloria [1 ]
Palomo, Jose M. [1 ]
Cabrera, Zaida [1 ]
Fernandez-Lafuente, Roberto [1 ]
Guisan, Jose M. [1 ]
机构
[1] CSIC, Inst Catalisis, Dept Biocatalisis, Madrid 28049, Spain
关键词
lipase hyperactivation; lipase inhibition; detergents; conformational equilibrium; modulation of lipase properties;
D O I
10.1002/bit.21230
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The addition of a very small concentration of a detergent (in many instances under the critical micellar concentration (cmc)) has been found to greatly increase the activity of immobilized lipases, using those from Pseudomonas fluorescens (PFL) and Candida antarctica (isoform B) as model enzymes. However, the detergents may also have a negative effect on enzyme activity; in fact, for all enzyme preparations and substrates the activity/detergent concentration curve reached a maximum value and started to decrease, in many instances even under the initial value. The concentration and nature of the detergent (SDS, CTAB, Triton X-100, or X-45) that permitted the maximum hyperactivation was different depending on the substrate. The best hyperactivation values promoted by the presence of detergent were over a 20-fold factor. The presence of detergents permitted the inhibition of lipases by irreversible covalent inhibitors (e.g., 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) (AEBSF) while the enzyme, in the absence of detergent, is not inhibited by these irreversible inhibitors. This suggested that the main effect of the detergents is to shift the conformational equilibrium of lipases toward the open form. Moreover, the presence of detergents also permitted to improve the enantioselectivity exhibited by the immobilized lipases in some cases. For example, the enantioselectivity of PFL-glyoxyl agarose increased from 40 to more than 100 in the hydrolysis of (+/-)-2-hydroxy-4-phenylbutyric acid ethyl ester by using 0.1% CTAB.
引用
收藏
页码:242 / 250
页数:9
相关论文
共 65 条
[1]   One biocatalyst - Many applications: The use of Candida antarctica B-lipase in organic synthesis [J].
Anderson, EM ;
Karin, M ;
Kirk, O .
BIOCATALYSIS AND BIOTRANSFORMATION, 1998, 16 (03) :181-204
[2]   Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water-lipid interface [J].
Baño, MC ;
González-Navarro, H ;
Abad, C .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2003, 1632 (1-2) :55-61
[3]  
Bastida A, 1998, BIOTECHNOL BIOENG, V58, P486, DOI 10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO
[4]  
2-9
[5]   STABILIZATION OF ENZYMES BY MULTIPOINT COVALENT ATTACHMENT TO AGAROSE ALDEHYDE GELS - BOROHYDRIDE REDUCTION OF TRYPSIN AGAROSE DERIVATIVES [J].
BLANCO, RM ;
GUISAN, JM .
ENZYME AND MICROBIAL TECHNOLOGY, 1989, 11 (06) :360-366
[6]   Methods to increase enantioselectivity of lipases and esterases [J].
Bornscheuer, UT .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (06) :543-547
[7]   Optimizing lipases and related enzymes for efficient application [J].
Bornscheuer, UT ;
Bessler, C ;
Srinivas, R ;
Krishna, SH .
TRENDS IN BIOTECHNOLOGY, 2002, 20 (10) :433-437
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   A MODEL FOR INTERFACIAL ACTIVATION IN LIPASES FROM THE STRUCTURE OF A FUNGAL LIPASE-INHIBITOR COMPLEX [J].
BRZOZOWSKI, AM ;
DEREWENDA, U ;
DEREWENDA, ZS ;
DODSON, GG ;
LAWSON, DM ;
TURKENBURG, JP ;
BJORKLING, F ;
HUGEJENSEN, B ;
PATKAR, SA ;
THIM, L .
NATURE, 1991, 351 (6326) :491-494
[10]   Acyl glycerol hydrolases: Inhibitors, interface and catalysis [J].
Cambillau, C ;
Longhi, S ;
Nicolas, A ;
Martinez, C .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (04) :449-455