Setting the tempo in development:: An investigation of the zebrafish somite clock mechanism

被引:151
作者
Giudicelli, Francois [1 ]
Ozbudak, Ertugrul M. [1 ]
Wright, Gavin J. [1 ]
Lewis, Julian [1 ]
机构
[1] Canc Res UK London Res Inst, Vertebrate Dev Lab, London, England
关键词
D O I
10.1371/journal.pbio.0050150
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The somites of the vertebrate embryo are clocked out sequentially from the presomitic mesoderm (PSM) at the tail end of the embryo. Formation of each somite corresponds to one cycle of oscillation of the somite segmentation clock-a system of genes whose expression switches on and off periodically in the cells of the PSM. We have previously proposed a simple mathematical model explaining how the oscillations, in zebrafish at least, may be generated by a delayed negative feedback loop in which the products of two Notch target genes, her1 and her7, directly inhibit their own transcription, as well as that of the gene for the Notch ligand DeltaC; Notch signalling via DeltaC keeps the oscillations of neighbouring cells in synchrony. Here we subject the model to quantitative tests. We show how to read temporal information from the spatial pattern of stripes of gene expression in the anterior PSM and in this way obtain values for the biosynthetic delays and molecular lifetimes on which the model critically depends. Using transgenic lines of zebrafish expressing her1 or her7 under heat-shock control, we confirm the regulatory relationships postulated by the model. From the timing of somite segmentation disturbances following a pulse of her7 misexpression, we deduce that although her7 continues to oscillate in the anterior half of the PSM, it governs the future somite segmentation behaviour of the cells only while they are in the posterior half. In general, the findings strongly support the mathematical model of how the somite clock works, but they do not exclude the possibility that other oscillator mechanisms may operate upstream from the her7/her1 oscillator or in parallel with it.
引用
收藏
页码:1309 / 1323
页数:15
相关论文
共 52 条
[1]   Wnt3A plays a major role in the segmentation clock controlling somitogenesis [J].
Aulehla, A ;
Wehrle, C ;
Brand-Saberi, B ;
Kemler, R ;
Gossler, A ;
Kanzler, B ;
Herrmann, BG .
DEVELOPMENTAL CELL, 2003, 4 (03) :395-406
[2]   Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis [J].
Barrios, A ;
Poole, RJ ;
Durbin, L ;
Brennan, C ;
Holder, N ;
Wilson, SW .
CURRENT BIOLOGY, 2003, 13 (18) :1571-1582
[3]   Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock [J].
Bessho, Y ;
Hirata, H ;
Masamizu, Y ;
Kageyama, R .
GENES & DEVELOPMENT, 2003, 17 (12) :1451-1456
[4]   Dynamic expression and essential functions of Hes7 in somite segmentation [J].
Bessho, Y ;
Sakata, R ;
Komatsu, S ;
Shiota, K ;
Yamada, S ;
Kageyama, R .
GENES & DEVELOPMENT, 2001, 15 (20) :2642-2647
[5]   Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis [J].
Dale, JK ;
Malapert, P ;
Chal, J ;
Vilhais-Neto, G ;
Maroto, M ;
Johnson, T ;
Jayasinghe, S ;
Trainor, P ;
Herrmann, B ;
Pourquié, O .
DEVELOPMENTAL CELL, 2006, 10 (03) :355-366
[6]   Periodic Notch inhibition by lunatic fringe underlies the chick segmentation clock [J].
Dale, JK ;
Maroto, M ;
Dequeant, ML ;
Malapert, P ;
McGrew, M ;
Pourquie, O .
NATURE, 2003, 421 (6920) :275-278
[7]   A complex oscillating network of signaling genes underlies the mouse segmentation clock [J].
Dequeant, Mary-Lee ;
Glynn, Earl ;
Gaudenz, Karin ;
Wahl, Matthias ;
Chen, Jie ;
Mushegian, Arcady ;
Pourquie, Olivier .
SCIENCE, 2006, 314 (5805) :1595-1598
[8]  
Diez del Corral R, 2003, NEURON, V40, P65
[9]   fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo [J].
Dubrulle, J ;
Pourquié, O .
NATURE, 2004, 427 (6973) :419-422
[10]   FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation [J].
Dubrulle, J ;
McGrew, MJ ;
Pourquié, O .
CELL, 2001, 106 (02) :219-232