Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (Review)

被引:102
作者
Ashley, RH [1 ]
机构
[1] Univ Edinburgh, Dept Biomed Sci, Edinburgh EH8 9XD, Midlothian, Scotland
基金
英国惠康基金;
关键词
auto-insertion; chloride channel; patch clamp; planar lipid bilayer;
D O I
10.1080/09687680210042746
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Parchorin, p64 and the related chloride intracellular channel (CLIC) proteins are widely expressed in multicellular organisms and have emerged as candidates for novel, auto-inserting, self-assembling intracellular anion channels involved in a wide variety of fundamental cellular events including regulated secretion, cell division and apoptosis. Although the mammalian phosphoproteins p64 and parchorin (49 and 65K, respectively) have only been indirectly implicated in anion channel activity, two CLIC proteins (CLIC1 and CLIC4, 27 and 29K, respectively) appear to be essential molecular components of anion channels, and CLIC1 can form anion channels in planar lipid bilayers in the absence of other cellular proteins. However, these putative ion channel proteins are controversial because they exist in both soluble and membrane forms, with at least one transmembrane domain. Even more surprisingly, soluble CLICs share the same glutaredoxin fold as soluble omega class glutathione-S-transferases. Working out how these ubiquitous, soluble proteins unfold, insert into membranes and then refold to form integral membrane proteins, and how cells control this potentially dangerous process and make use of the associated ion channels, are challenging prospects. Critical to this future work is the need for better characterization of membrane topology, careful functional analysis of reconstituted and native channels, including their conductances and selectivities, and detailed structure/function studies including targeted mutagenesis to investigate the structure of the putative pore, the role of protein phosphorylation and the role of conserved cysteine residues.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 92 条
[1]   CHLORIDE CHANNELS OF INTRACELLULAR ORGANELLES [J].
ALAWQATI, Q .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (04) :504-508
[2]   AN IAA-SENSITIVE VACUOLAR CHLORIDE CHANNEL [J].
ALAWQATI, Q .
CHLORIDE CHANNELS, 1994, 42 :59-72
[3]  
ALAWQATI Q, 1992, J EXP BIOL, V172, P245
[4]   ACTIVATION AND CONDUCTANCE PROPERTIES OF RYANODINE-SENSITIVE CALCIUM CHANNELS FROM BRAIN MICROSOMAL-MEMBRANES INCORPORATED INTO PLANAR LIPID BILAYERS [J].
ASHLEY, RH .
JOURNAL OF MEMBRANE BIOLOGY, 1989, 111 (02) :179-189
[5]   PROTEIN KINASE-A REGULATES CHLORIDE CONDUCTANCE IN ENDOCYTIC VESICLES FROM PROXIMAL TUBULE [J].
BAE, HR ;
VERKMAN, AS .
NATURE, 1990, 348 (6302) :637-639
[6]   COMPLETELY FUNCTIONAL DOUBLE-BARRELED CHLORIDE CHANNEL EXPRESSED FROM A SINGLE TORPEDO CDNA [J].
BAUER, CK ;
STEINMEYER, K ;
SCHWARZ, JR ;
JENTSCH, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11052-11056
[7]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818
[8]   Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli [J].
Berryman, M ;
Bretscher, A .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1509-1521
[9]   FUNCTIONAL CFTR IN ENDOSOMAL COMPARTMENT OF CFTR-EXPRESSING FIBROBLASTS AND T84 CELLS [J].
BIWERSI, J ;
VERKMAN, AS .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (01) :C149-C156
[10]   Identification, characterization, and crystal structure of the omega class glutathione transferases [J].
Board, PG ;
Coggan, M ;
Chelvanayagam, G ;
Easteal, S ;
Jermiin, LS ;
Schulte, GK ;
Danley, DE ;
Hoth, LR ;
Griffor, MC ;
Kamath, AV ;
Rosner, MH ;
Chrunyk, BA ;
Perregaux, DE ;
Gabel, CA ;
Geoghegan, KF ;
Pandit, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (32) :24798-24806