Unexpectedly large surface gravities for acoustic horizons?

被引:41
作者
Liberati, S
Sonego, S
Visser, M
机构
[1] Scuola Int Super Studi Avanzati, SISSA, I-34014 Trieste, Italy
[2] Inst Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[3] Univ Udine, I-33100 Udine, Italy
[4] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
D O I
10.1088/0264-9381/17/15/305
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Acoustic black holes are fluid-dynamic analogues of general relativistic black holes, wherein the behaviour of sound waves in a moving fluid acts as an analogue for scalar fields propagating in a gravitational background. Acoustic horizons, which are intimately related to regions where the speed of the fluid Row exceeds the local speed of sound, possess many of the properties more normally associated with the event horizons of general relativity, up to and including Hawking radiation. Acoustic black holes have received much attention because it would seem to be much easier to create an acoustic horizon experimentally than to create an event horizon. Here we wish to point out some potential difficulties land opportunities) in actually setting up an experiment that possesses an acoustic horizon. We show that in zero-viscosity, stationary fluid flow with generic boundary conditions, the creation of an acoustic horizon is accompanied by a formally infinite 'surface gravity', and a formally infinite Hawking Aux. Only by applying a suitable non-constant external body force, and for very specific boundary conditions on the how, can these quantities be kept finite. This problem is ameliorated in more realistic models of the fluid. For instance, adding viscosity always makes the Hawking Aux finite land typically large), but doing so greatly complicates the behaviour of the acoustic radiation-viscosity is tantamount to explicitly breaking 'acoustic Lorentz invariance'. Thus, this issue represents both a difficulty and an opportunity-acoustic horizons may be somewhat more difficult to form than naively envisaged, but if formed, they may be much easier to detect than one would at first suppose.
引用
收藏
页码:2903 / 2923
页数:21
相关论文
共 43 条
  • [1] [Anonymous], 2002, J ACOUST SOC AM
  • [2] LORENTZ INVARIANCE AS A LOW-ENERGY PHENOMENON
    CHADHA, S
    NIELSEN, HB
    [J]. NUCLEAR PHYSICS B, 1983, 217 (01) : 125 - 144
  • [3] On the Lambert W function
    Corless, RM
    Gonnet, GH
    Hare, DEG
    Jeffrey, DJ
    Knuth, DE
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) : 329 - 359
  • [4] GARAY LJ, 2000, GRQC0002015
  • [5] BLACK-HOLE RADIATION IN THE PRESENCE OF A SHORT-DISTANCE CUTOFF
    JACOBSON, T
    [J]. PHYSICAL REVIEW D, 1993, 48 (02): : 728 - 741
  • [6] BLACK-HOLE EVAPORATION AND ULTRASHORT DISTANCES
    JACOBSON, T
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1731 - 1739
  • [7] Jacobson T, 1999, PROG THEOR PHYS SUPP, P1, DOI 10.1143/PTPS.136.1
  • [8] JACOBSON T, 1993, HEPTH9303103
  • [9] Jacobson TA, 1998, PHYS REV D, V58, DOI 10.1103/PhysRevD.58.064021
  • [10] Effective spacetime and Hawking radiation from a moving domain wall in a thin film of 3He-A
    Jacobson, TA
    Volovik, GE
    [J]. JETP LETTERS, 1998, 68 (11) : 874 - 880