Synthesis and properties of star-shaped polylactide attached to poly(amidoamine) dendrimer

被引:137
作者
Cai, Q [1 ]
Zhao, YL [1 ]
Bei, JZ [1 ]
Xi, F [1 ]
Wang, SG [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Ctr Mol Sci, SKLPPC, Beijing 100080, Peoples R China
关键词
D O I
10.1021/bm034051a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Star-shaped polylactide was synthesized by bulk polymerization of lactide with poly(amidoamine) (PAMAM) dendrimer as initiator, which was marked as PAMAM-g-PLA for simplicity. The nonlinear architecture of PAMAM-g-PLA was confirmed by gel permeation chromatograph, nuclear magnetic resonance, and differential scanning calorimetry analysis. Unlike the linear polylactide (PLA) with similar molecular weight, PAMAM-g-PLA had a higher hydrophilicity and a faster degradation rate because of shortened polymer chains and increased polar terminal endgroups due to its branch structure. The highly branched structure significantly accelerated the release of water-soluble bovine serum albumin from PAMAM-g-PLA microspheres, whereas the linear PLA with similar molecular weight exhibited an initial time lag release. This star polymer may have potential applications for hydrophilic drug delivery in tissue engineering, including growth factor and antibodies to induce tissue regeneration, by adjusting the chain lengths of PLA branches.
引用
收藏
页码:828 / 834
页数:7
相关论文
共 47 条
[1]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, JM ;
Shive, MS .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :5-24
[2]  
[Anonymous], CHIN J FUNCTIONAL PO
[3]   Synthesis and degradability of a novel aliphatic polyester based on L-lactide and sorbitol .3. [J].
Arvanitoyannis, I ;
Nakayama, A ;
Psomiadou, E ;
Kawasaki, N ;
Yamamoto, N .
POLYMER, 1996, 37 (04) :651-660
[4]   NOVEL STAR-SHAPED POLYLACTIDE WITH GLYCEROL USING STANNOUS OCTOATE OR TETRAPHENYL TIN AS CATALYST .1. SYNTHESIS, CHARACTERIZATION AND STUDY OF THEIR BIODEGRADABILITY [J].
ARVANITOYANNIS, I ;
NAKAYAMA, A ;
KAWASAKI, N ;
YAMAMOTO, N .
POLYMER, 1995, 36 (15) :2947-2956
[5]   Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers [J].
Athanasiou, KA ;
Niederauer, GG ;
Agrawal, CM .
BIOMATERIALS, 1996, 17 (02) :93-102
[6]   Materials for protein delivery in tissue engineering [J].
Baldwin, SP ;
Saltzman, WM .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 33 (1-2) :71-86
[7]   Biodegradable comb polyesters: Part 1 - Synthesis, characterization and structural analysis of poly(lactide) and poly(lactide-co-glycolide) grafted onto water-soluble poly(vinyl alcohol) as backbone [J].
Breitenbach, A ;
Kissel, T .
POLYMER, 1998, 39 (14) :3261-3271
[8]   Biodegradable comb polyesters.: Part II.: Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid) [J].
Breitenbach, A ;
Pistel, KF ;
Kissel, T .
POLYMER, 2000, 41 (13) :4781-4792
[9]   Branched biodegradable polyesters for parenteral drug delivery systems [J].
Breitenbach, A ;
Li, YX ;
Kissel, T .
JOURNAL OF CONTROLLED RELEASE, 2000, 64 (1-3) :167-178
[10]   LACTONE POLYMERIZATION AND POLYMER PROPERTIES [J].
BRODE, GL ;
KOLESKE, JV .
JOURNAL OF MACROMOLECULAR SCIENCE-CHEMISTRY, 1972, A 6 (06) :1109-1144