Riemann-Cartan spacetimes of Godel type

被引:24
作者
Aman, JE
Fonseca-Neto, JB
MacCallum, MAH
Reboucas, MJ
机构
[1] Univ Stockholm, Inst Theoret Phys, S-11385 Stockholm, Sweden
[2] Univ Fed Paraiba, Dept Fis, BR-58059900 Joao Pessoa, Paraiba, Brazil
[3] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
[4] Ctr Brasileiro Pesquisas Fis, Dept Relatividade & Particulas, BR-22290180 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0264-9381/15/4/026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A class of Riemann-Cartan Godel-type spacetimes are examined in the light of equivalence problem techniques. The conditions for local spacetime homogeneity are derived, generalizing previous works on Riemannian Godel-type spacetimes. The equivalence of Riemann-Cartan Godel-type spacetimes of this class is studied. It is shown that they admit a five-dimensional group of affine isometries and are characterized by three essential parameters l, m(2), omega: identical triads (l, m(2), omega) correspond to locally equivalent manifolds. The algebraic types of the irreducible parts of the curvature and torsion tensors are also presented.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 37 条
[1]   PLANE-WAVES IN GAUGE-THEORIES OF GRAVITATION [J].
ADAMOWICZ, W .
GENERAL RELATIVITY AND GRAVITATION, 1980, 12 (09) :677-691
[2]  
Aman J.E., 1987, MANUAL CLASSI CLASSI
[3]  
AMAN JE, 1998, PRACTICAL PROCEDURE
[4]  
AMAN JE, 1995, 14 INT C GEN REL GRA, P179
[5]  
BALACHANDRAN AP, 1997, IN PRESS INT J THEOR
[6]  
Cartan E., 1951, Lecons sur la geom'etrie des espaces de Riemann, V2nd
[7]   2ND-ORDER AND 4TH-ORDER INVARIANTS ON CURVED MANIFOLDS WITH TORSION [J].
CHRISTENSEN, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (09) :3001-3009
[8]  
EHLERS J, 1981, EB CHRISTOFFEL
[9]   Algebraic computing in torsion theories of gravitation [J].
FonsecaNeto, JB ;
Reboucas, MJ ;
MacCallum, MAH .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (4-6) :739-748
[10]   THE EQUIVALENCE PROBLEM IN TORSION THEORIES OF GRAVITATION [J].
FONSECANETO, JB ;
REBOUCAS, MJ ;
TEIXEIRA, AFF .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2574-2577