Riemann-Cartan spacetimes of Godel type

被引:24
作者
Aman, JE
Fonseca-Neto, JB
MacCallum, MAH
Reboucas, MJ
机构
[1] Univ Stockholm, Inst Theoret Phys, S-11385 Stockholm, Sweden
[2] Univ Fed Paraiba, Dept Fis, BR-58059900 Joao Pessoa, Paraiba, Brazil
[3] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
[4] Ctr Brasileiro Pesquisas Fis, Dept Relatividade & Particulas, BR-22290180 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0264-9381/15/4/026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A class of Riemann-Cartan Godel-type spacetimes are examined in the light of equivalence problem techniques. The conditions for local spacetime homogeneity are derived, generalizing previous works on Riemannian Godel-type spacetimes. The equivalence of Riemann-Cartan Godel-type spacetimes of this class is studied. It is shown that they admit a five-dimensional group of affine isometries and are characterized by three essential parameters l, m(2), omega: identical triads (l, m(2), omega) correspond to locally equivalent manifolds. The algebraic types of the irreducible parts of the curvature and torsion tensors are also presented.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 37 条
[11]  
FONSECANETO JB, 1998, ALGEBRAICALLY INDEPE
[12]  
FONSECANETO JB, 1993, P INT IMACS S SYMB C
[13]  
FONSECANETO JB, 1998, CLASS RIEMANNCARTAN
[15]   GENERAL RELATIVITY WITH SPIN AND TORSION - FOUNDATIONS AND PROSPECTS [J].
HEHL, FW ;
VONDERHEYDE, P ;
KERLICK, GD ;
NESTER, JM .
REVIEWS OF MODERN PHYSICS, 1976, 48 (03) :393-416
[16]   METRIC-AFFINE GAUGE-THEORY OF GRAVITY - FIELD-EQUATIONS, NOETHER IDENTITIES, WORLD SPINORS, AND BREAKING OF DILATION INVARIANCE [J].
HEHL, FW ;
MCCREA, JD ;
MIELKE, EW ;
NEEMAN, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 258 (1-2) :1-171
[17]  
HEHL FW, 1997, P 14 INT C GEN REL G
[18]   A REVIEW OF THE GEOMETRICAL EQUIVALENCE OF METRICS IN GENERAL-RELATIVITY [J].
KARLHEDE, A .
GENERAL RELATIVITY AND GRAVITATION, 1980, 12 (09) :693-707
[19]   THEORY OF DEFECTS IN SOLIDS AND 3-DIMENSIONAL GRAVITY [J].
KATANAEV, MO ;
VOLOVICH, IV .
ANNALS OF PHYSICS, 1992, 216 (01) :1-28
[20]   THE DIFFERENTIAL GEOMETRY OF ELEMENTARY POINT AND LINE DEFECTS IN BRAVAIS CRYSTALS [J].
KRONER, E .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (11) :1219-1237