Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein

被引:87
作者
Nunziante, M [1 ]
Gilch, S [1 ]
Schätzl, HM [1 ]
机构
[1] Univ Munich, Gene Ctr Munich, Dept Virol, Max Von Pettenkofer Inst,Fac Med, D-81377 Munich, Germany
关键词
D O I
10.1074/jbc.M206313200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aberrant metabolism and conformational alterations of the cellular prion protein (PrPc) are the underlying causes of transmissible spongiform encephalopathies in humans and animals. In cells, PrPc is modified post-translationally and transported along the secretory pathway to the plasma membrane, where it is attached to the cell surface by a glycosylphosphatidylinositol anchor. In surface biotinylation assays we observed that deletions within the unstructured N terminus of murine PrPc led to a significant reduction of internalization of PrP after transfection of murine neuroblastoma cells. Truncation of the entire N terminus most significantly inhibited internalization of PrPc. The same deletions caused a significant prolongation of cellular half-life of PrPc and a delay in the transport through the secretory pathway to the cell surface. There was no difference in the glycosylation kinetics, indicating that all PrP constructs equally passed endoplasmic reticulum-based cellular quality control. Addition of the N terminus of the Xenopus laevis PrP, which does not encode a copper-binding repeat element, to N-terminally truncated mouse PrP restored the wild type phenotype. These results provide deeper insight into the life cycle of the PrPc, raising the novel possibility of a targeting function of its N-proximal part by interacting with the secretory and the endocytic machinery. They also indicate the conservation of this targeting property in evolution.
引用
收藏
页码:3726 / 3734
页数:9
相关论文
共 48 条
[1]   SCRAPIE AND CELLULAR PRION PROTEINS DIFFER IN THEIR KINETICS OF SYNTHESIS AND TOPOLOGY IN CULTURED-CELLS [J].
BORCHELT, DR ;
SCOTT, M ;
TARABOULOS, A ;
STAHL, N ;
PRUSINER, SB .
JOURNAL OF CELL BIOLOGY, 1990, 110 (03) :743-752
[2]   MECHANISM OF MEMBRANE ANCHORING AFFECTS POLARIZED EXPRESSION OF 2 PROTEINS IN MDCK CELLS [J].
BROWN, DA ;
CRISE, B ;
ROSE, JK .
SCIENCE, 1989, 245 (4925) :1499-1501
[3]   Spongiform encephalopathies - B lymphocytes and neuroinvasion [J].
Brown, P .
NATURE, 1997, 390 (6661) :662-663
[4]   Normal prion protein has an activity like that of superoxide dismutase [J].
Brown, DR ;
Wong, BS ;
Hafiz, F ;
Clive, C ;
Haswell, SJ ;
Jones, IM .
BIOCHEMICAL JOURNAL, 1999, 344 :1-5
[5]   SCRAPIE-INFECTED MURINE NEURO-BLASTOMA CELLS PRODUCE PROTEASE-RESISTANT PRION PROTEINS [J].
BUTLER, DA ;
SCOTT, MRD ;
BOCKMAN, JM ;
BORCHELT, DR ;
TARABOULOS, A ;
HSIAO, KK ;
KINGSBURY, DT ;
PRUSINER, SB .
JOURNAL OF VIROLOGY, 1988, 62 (05) :1558-1564
[6]   Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation [J].
Chiesa, R ;
Drisaldi, B ;
Quaglio, E ;
Migheli, A ;
Piccardo, P ;
Ghetti, B ;
Harris, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5574-5579
[7]   Prion diseases of humans and animals: Their causes and molecular basis [J].
Collinge, J .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :519-550
[8]   The molecular biology of the CNTF receptor [J].
Davis, Samuel ;
Yancopoulos, George D. .
CURRENT OPINION IN CELL BIOLOGY, 1993, 5 (02) :281-285
[9]   Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible [J].
Donne, DG ;
Viles, JH ;
Groth, D ;
Mehlhorn, I ;
James, TL ;
Cohen, FE ;
Prusiner, SB ;
Wright, PE ;
Dyson, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (25) :13452-13457
[10]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888