Histone deacetylase 7 associates with hypoxia-inducible factor 1α and increases transcriptional activity

被引:177
作者
Kato, H [1 ]
Tamamizu-Kato, S [1 ]
Shibasaki, F [1 ]
机构
[1] Tokyo Metropolitan Inst Med Sci, Dept Mol Cell Physiol, Bunkyo Ku, Tokyo 1138613, Japan
关键词
D O I
10.1074/jbc.M406320200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hypoxia-inducible factor (HIF)-1alpha is a transcription factor that controls expression of genes responsive to low oxygen tension, including vascular endothelial growth factor ( VEGF), erythropoietin, and glycolytic enzymes. The activity of HIF-1alpha is regulated by binding to the transcriptional co-activator cAMP-response element-binding protein-binding protein (CBP)/p300. Using the yeast two-hybrid screening system, we found that the inhibitory domain of HIF-1alpha strongly interacted with the C-terminal domain of histone deacetylase (HDAC) 7. The o-nitrophenyl beta-D-galactopyranoside assay revealed that regions containing amino acids 735 785 of HIF-1alpha and amino acids 669 - 952 of HDAC7 were minimum contact sites of the interaction. The binding of HDAC7 with HIF-1alpha was reproduced in HEK293 cells grown under normoxic and hypoxic conditions (2% O-2). HDAC7 bound solely to HIF-1alpha among other HIF-alpha family members, including HIF-2alpha and HIF-3alpha, whereas HIF-1alpha only interacted with HDAC7 in the class II HDAC family. Although HDAC7 was localized dominantly in the cytoplasm at normal oxygen concentrations, HDAC7 co-translocated to the nucleus with HIF-1alpha under hypoxic conditions. In the nucleus, HDAC7 increased transcriptional activity of HIF-1alpha through the formation of a complex with HIF-1alpha, HDAC7, and p300. Taken together, these results indicate that HDAC7 is a novel transcriptional activator of HIF-1alpha.
引用
收藏
页码:41966 / 41974
页数:9
相关论文
共 41 条
[1]   EFFECT OF HYPOXIA UPON INTRACELLULAR CALCIUM-CONCENTRATION OF HUMAN ENDOTHELIAL-CELLS [J].
ARNOULD, T ;
MICHIELS, C ;
ALEXANDRE, I ;
REMACLE, J .
JOURNAL OF CELLULAR PHYSIOLOGY, 1992, 152 (01) :215-221
[2]   Class II histone deacetylases: Structure, function, and regulation [J].
Bertos, NR ;
Wang, AH ;
Yang, XJ .
BIOCHEMISTRY AND CELL BIOLOGY, 2001, 79 (03) :243-252
[3]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[4]   Hypoxia regulation of gene transcription [J].
Caro, J .
HIGH ALTITUDE MEDICINE & BIOLOGY, 2001, 2 (02) :145-154
[5]   Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α [J].
Carrero, P ;
Okamoto, K ;
Coumailleau, P ;
O'Brien, S ;
Tanaka, H ;
Poellinger, L .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (01) :402-415
[6]   Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response [J].
Dames, SA ;
Martinez-Yamout, M ;
De Guzman, RN ;
Dyson, HJ ;
Wright, PE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5271-5276
[7]   Histone deacetylases (HDACs): characterization of the classical HDAC family [J].
De Ruijter, AJM ;
Van Gennip, AH ;
Caron, HN ;
Kemp, S ;
Van Kuilenburg, ABP .
BIOCHEMICAL JOURNAL, 2003, 370 :737-749
[8]   A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 alpha regulates the VEGF expression and is potentially involved in lung and vascular development [J].
Ema, M ;
Taya, S ;
Yokotani, N ;
Sogawa, K ;
Matsuda, Y ;
FujiiKuriyama, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4273-4278
[9]   Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia:: their stabilization and redox signal-induced interaction with CBP/p300 [J].
Ema, M ;
Hirota, K ;
Mimura, J ;
Abe, H ;
Yodoi, J ;
Sogawa, K ;
Poellinger, L ;
Fujii-Kuriyama, Y .
EMBO JOURNAL, 1999, 18 (07) :1905-1914
[10]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54