Polymer templated nanocrystalline titania network for solid state dye sensitized solar cells

被引:10
作者
Brendel, Johannes C. [1 ]
Lu, Yan [1 ]
Thelakkat, Mukundan [1 ]
机构
[1] Univ Bayreuth, D-95440 Bayreuth, Germany
关键词
ELECTRON-DIFFUSION; MESOPOROUS TIO2; HOLE CONDUCTOR; EFFICIENCY; RECOMBINATION; PHOTOCURRENT; TRANSPORT; LAYER; FILMS;
D O I
10.1039/c0jm00916d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a novel preparation method for nanocrystalline TiO(2) networks with controlled pore sizes using spherical polyelectrolyte brushes (SPB) as templates. The SPB consists of a solid polystyrene core from which anionic polyelectrolytes are densely grafted. The SPB templates are synthesized via conventional photoemulsion polymerization with efficient control of core size and brush length. Subsequently, the TiO(2) precursor is hydrolyzed at room temperature within the anionic brush to obtain anatase nanocrystals of 12-20 nm size. These stable and form-persistent composite particles of SPB decorated with anatase nanocrystals are then assembled on a conductive substrate. The subsequent calcination of this composite layer leads to a robust nanocrystalline TiO(2) network, in which the pores and the wall thickness are directly correlated to the polystyrene core size and the amount of TiO(2) hydrolyzed within the brush respectively. In this study, we optimized different thin-film preparation methods and characterized the resulting nanocrystalline TiO(2) networks using SEM and XRD. Moreover, the applicability of these nanocrystalline networks as electron transport layers are tested in solid-state dye-sensitized solar cells (SDSCs). The first test devices exhibited efficiencies up to 0.8%. The precise and individual control of parameters such as porosity, thickness and crystallinity makes this concept highly attractive for the realization of efficient solid-state hybrid devices.
引用
收藏
页码:7255 / 7265
页数:11
相关论文
共 31 条
[1]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[2]   Spherical polyelectrolyte brushes [J].
Ballauff, M. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (10) :1135-1151
[3]  
Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI 10.1021/jp01194lg
[4]  
Chemseddine A, 1999, EUR J INORG CHEM, P235, DOI 10.1002/(SICI)1099-0682(19990202)1999:2<235::AID-EJIC235>3.0.CO
[5]  
2-N
[6]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[7]   Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications [J].
Coakley, KM ;
Liu, YX ;
McGehee, MD ;
Frindell, KL ;
Stucky, GD .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (04) :301-306
[8]   A Bicontinuous Double Gyroid Hybrid Solar Cell [J].
Crossland, Edward J. W. ;
Kamperman, Marleen ;
Nedelcu, Mihaela ;
Ducati, Caterina ;
Wiesner, Ulrich ;
Smilgies, Detlef -M. ;
Toombes, Gilman E. S. ;
Hillmyer, Marc A. ;
Ludwigs, Sabine ;
Steiner, Ullrich ;
Snaith, Henry J. .
NANO LETTERS, 2009, 9 (08) :2807-2812
[9]   How Efficient Is Electron Collection in Dye-Sensitized Solar Cells? Comparison of Different Dynamic Methods for the Determination of the Electron Diffusion Length [J].
Dunn, Halina K. ;
Peter, Laurence M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (11) :4726-4731
[10]   Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials [J].
Gebeyehu, D ;
Brabec, CJ ;
Sariciftci, NS ;
Vangeneugden, D ;
Kiebooms, R ;
Vanderzande, D ;
Kienberger, F ;
Schindler, H .
SYNTHETIC METALS, 2001, 125 (03) :279-287