The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase

被引:75
作者
Zhang, Hao [1 ,2 ]
Liu, Yujie [1 ,2 ]
Nie, Xiaoqun [1 ,2 ]
Liu, Lixia [1 ]
Hua, Qiang [3 ]
Zhao, Guo-Ping [1 ,4 ,5 ,6 ,7 ]
Yang, Chen [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Plant Physiol & Ecol, CAS Ctr Excellence Mol Plant Sci, CAS Key Lab Synthet Biol, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai, Peoples R China
[4] Fudan Univ, Sch Life Sci, Dept Microbiol & Microbial Engn, State Key Lab Genet Engn, Shanghai, Peoples R China
[5] Fudan Univ, Sch Life Sci, Dept Microbiol & Microbial Engn, Ctr Synthet Biol, Shanghai, Peoples R China
[6] Chinese Univ Hong Kong, Prince Wales Hosp, Dept Microbiol, Shatin, Hong Kong, Peoples R China
[7] Chinese Univ Hong Kong, Prince Wales Hosp, Li Ka Shing Inst Hlth Sci, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
NITROGEN-FIXING CYANOBACTERIA; SP PCC 6803; ESCHERICHIA-COLI; UREA CYCLE; MASS-SPECTROMETRY; IN-VIVO; METABOLISM; EVOLUTION; ENZYME; ACTIVATION;
D O I
10.1038/s41589-018-0038-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Living organisms have evolved mechanisms for adjusting their metabolism to adapt to environmental nutrient availability. Terrestrial animals utilize the ornithine-urea cycle to dispose of excess nitrogen derived from dietary protein. Here, we identified an active ornithine-ammonia cycle (OAC) in cyanobacteria through an approach combining dynamic N-15 and C-13 tracers, metabolomics, and mathematical modeling. The pathway starts with carbamoyl phosphate synthesis by the bacterial-and plant-type glutamine-dependent enzyme and ends with conversion of arginine to ornithine and ammonia by a novel arginine dihydrolase. An arginine dihydrolase-deficient mutant showed disruption of OAC and severely impaired cell growth when nitrogen availability oscillated. We demonstrated that the OAC allows for rapid remobilization of nitrogen reserves under starvation and a high rate of nitrogen assimilation and storage after the nutrient becomes available. Thus, the OAC serves as a conduit in the nitrogen storage-and-remobilization machinery in cyanobacteria and enables cellular adaptation to nitrogen fluctuations.
引用
收藏
页码:575 / +
页数:9
相关论文
共 50 条
[1]   Evolution and metabolic significance of the urea cycle in photosynthetic diatoms [J].
Allen, Andrew E. ;
Dupont, Christopher L. ;
Obornik, Miroslav ;
Horak, Ales ;
Nunes-Nesi, Adriano ;
McCrow, John P. ;
Zheng, Hong ;
Johnson, Daniel A. ;
Hu, Hanhua ;
Fernie, Alisdair R. ;
Bowler, Chris .
NATURE, 2011, 473 (7346) :203-+
[2]  
ALLEN MM, 1988, METHOD ENZYMOL, V167, P207
[3]   CYANOPHYCIN GRANULE POLYPEPTIDE FORMATION AND DEGRADATION IN THE CYANOBACTERIUM APHANOCAPSA 6308 [J].
ALLEN, MM ;
HUTCHISON, F ;
WEATHERS, PJ .
JOURNAL OF BACTERIOLOGY, 1980, 141 (02) :687-693
[4]   Trichodesmium - a widespread marine cyanobacterium with unusual nitrogen fixation properties [J].
Bergman, Birgitta ;
Sandh, Gustaf ;
Lin, Senjie ;
Larsson, John ;
Carpenter, Edward J. .
FEMS MICROBIOLOGY REVIEWS, 2013, 37 (03) :286-302
[5]   Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism [J].
Buescher, Joerg Martin ;
Liebermeister, Wolfram ;
Jules, Matthieu ;
Uhr, Markus ;
Muntel, Jan ;
Botella, Eric ;
Hessling, Bernd ;
Kleijn, Roelco Jacobus ;
Le Chat, Ludovic ;
Lecointe, Francois ;
Maeder, Ulrike ;
Nicolas, Pierre ;
Piersma, Sjouke ;
Ruegheimer, Frank ;
Becher, Doerte ;
Bessieres, Philippe ;
Bidnenko, Elena ;
Denham, Emma L. ;
Dervyn, Etienne ;
Devine, Kevin M. ;
Doherty, Geoff ;
Drulhe, Samuel ;
Felicori, Liza ;
Fogg, Mark J. ;
Goelzer, Anne ;
Hansen, Annette ;
Harwood, Colin R. ;
Hecker, Michael ;
Hubner, Sebastian ;
Hultschig, Claus ;
Jarmer, Hanne ;
Klipp, Edda ;
Leduc, Aurelie ;
Lewis, Peter ;
Molina, Frank ;
Noirot, Philippe ;
Peres, Sabine ;
Pigeonneau, Nathalie ;
Pohl, Susanne ;
Rasmussen, Simon ;
Rinn, Bernd ;
Schaffer, Marc ;
Schnidder, Julian ;
Schwikowski, Benno ;
Van Dijl, Jan Maarten ;
Veiga, Patrick ;
Walsh, Sean ;
Wilkinson, Anthony J. ;
Stelling, Joerg ;
Aymerich, Stephane .
SCIENCE, 2012, 335 (6072) :1099-1103
[6]   Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocystforming cyanobacterium [J].
Burnat, Mireia ;
Herrero, Antonia ;
Flores, Enrique .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (10) :3823-3828
[7]   The Evolution and Future of Earth's Nitrogen Cycle [J].
Canfield, Donald E. ;
Glazer, Alexander N. ;
Falkowski, Paul G. .
SCIENCE, 2010, 330 (6001) :192-196
[8]   BIOSYNTHESIS AND METABOLISM OF ARGININE IN BACTERIA [J].
CUNIN, R ;
GLANSDORFF, N ;
PIERARD, A ;
STALON, V .
MICROBIOLOGICAL REVIEWS, 1986, 50 (03) :314-352
[9]   Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways [J].
Delannay, S ;
Charlier, D ;
Tricot, C ;
Villeret, V ;
Piérard, A ;
Stalon, V .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (04) :1217-1228
[10]   Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry [J].
Finzi-Hart, Juliette A. ;
Pett-Ridge, Jennifer ;
Weber, Peter K. ;
Popa, Radu ;
Fallon, Stewart J. ;
Gunderson, Troy ;
Hutcheon, Ian D. ;
Nealson, Kenneth H. ;
Capone, Douglas G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (15) :6345-6350