p-Curve and p-Hacking in Observational Research

被引:133
作者
Bruns, Stephan B. [1 ]
Ioannidis, John P. A. [2 ,3 ,4 ,5 ]
机构
[1] Univ Kassel, Meta Res Econ Grp, D-34125 Kassel, Germany
[2] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[5] Stanford Univ, Meta Res Innovat Ctr Stanford, Stanford, CA 94305 USA
来源
PLOS ONE | 2016年 / 11卷 / 02期
关键词
SCIENCE-WISE FALSE; DISCOVERY RATE; VALUES; TRUTH;
D O I
10.1371/journal.pone.0149144
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The p-curve, the distribution of statistically significant p-values of published studies, has been used to make inferences on the proportion of true effects and on the presence of p-hacking in the published literature. We analyze the p-curve for observational research in the presence of p-hacking. We show by means of simulations that even with minimal omitted-variable bias (e.g., unaccounted confounding) p-curves based on true effects and p-curves based on null-effects with p-hacking cannot be reliably distinguished. We also demonstrate this problem using as practical example the evaluation of the effect of malaria prevalence on economic growth between 1960 and 1996. These findings call recent studies into question that use the p-curve to infer that most published research findings are based on true effects in the medical literature and in a wide range of disciplines. p-values in observational research may need to be empirically calibrated to be interpretable with respect to the commonly used significance threshold of 0.05. Violations of randomization in experimental studies may also result in situations where the use of p-curves is similarly unreliable.
引用
收藏
页数:13
相关论文
共 40 条
[21]   Big data meets public health [J].
Khoury, Muin J. ;
Ioannidis, John P. A. .
SCIENCE, 2014, 346 (6213) :1054-1055
[22]   Investigating Variation in Replicability A "Many Labs'' Replication Project [J].
Klein, Richard A. ;
Ratliff, Kate A. ;
Vianello, Michelangelo ;
Adams, Reginald B., Jr. ;
Bahnik, Stepan ;
Bernstein, Michael J. ;
Bocian, Konrad ;
Brandt, Mark J. ;
Brooks, Beach ;
Brumbaugh, Claudia Chloe ;
Cemalcilar, Zeynep ;
Chandler, Jesse ;
Cheong, Winnee ;
Davis, William E. ;
Devos, Thierry ;
Eisner, Matthew ;
Frankowska, Natalia ;
Furrow, David ;
Galliani, Elisa Maria ;
Hasselman, Fred ;
Hicks, Joshua A. ;
Hovermale, James F. ;
Hunt, S. Jane ;
Huntsinger, Jeffrey R. ;
IJzerman, Hans ;
John, Melissa-Sue ;
Joy-Gaba, Jennifer A. ;
Kappes, Heather Barry ;
Krueger, Lacy E. ;
Kurtz, Jaime ;
Levitan, Carmel A. ;
Mallett, Robyn K. ;
Morris, Wendy L. ;
Nelson, Anthony J. ;
Nier, Jason A. ;
Packard, Grant ;
Pilati, Ronaldo ;
Rutchick, Abraham M. ;
Schmidt, Kathleen ;
Skorinko, Jeanine L. ;
Smith, Robert ;
Steiner, Troy G. ;
Storbeck, Justin ;
Van Swol, Lyn M. ;
Thompson, Donna ;
van 't Veer, A. E. ;
Vaughn, Leigh Ann ;
Vranka, Marek ;
Wichman, Aaron L. ;
Woodzicka, Julie A. .
SOCIAL PSYCHOLOGY, 2014, 45 (03) :142-152
[23]   On the challenges of drawing conclusions from p-values just below 0.05 [J].
Lakens, Daniel .
PEERJ, 2015, 3
[24]   What p-hacking really looks like: A comment on Masicampo and LaLande (2012) [J].
Lakens, Daniel .
QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015, 68 (04) :829-832
[25]  
LEAMER EE, 1983, AM ECON REV, V73, P31
[26]   DATA MINING [J].
LOVELL, MC .
REVIEW OF ECONOMICS AND STATISTICS, 1983, 65 (01) :1-12
[27]  
Patel CJ, 2015, J CLIN EPID IN PRESS
[28]  
Rockey J, 2015, EUR EC REV IN PRESS
[29]   Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach [J].
Sala-I-Martin, X ;
Doppelhofer, G ;
Miller, RI .
AMERICAN ECONOMIC REVIEW, 2004, 94 (04) :813-835
[30]   Practices and impact of primary outcome adjustment in randomized controlled trials: meta-epidemiologic study [J].
Saquib, Nazmus ;
Saquib, Juliann ;
Ioannidis, John P. A. .
BMJ-BRITISH MEDICAL JOURNAL, 2013, 347