Machine learning approach to modeling sediment transport

被引:167
作者
Bhattacharya, B. [1 ]
Price, R. K. [1 ]
Solomatine, D. P. [1 ]
机构
[1] UNESCO, IHE, Inst Water Educ, Dept Hydroinformat & Knowledge Management, NL-2601 DA Delft, Netherlands
关键词
D O I
10.1061/(ASCE)0733-9429(2007)133:4(440)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Inaccuracies of sediment transport models largely originate from our limitation to describe the process in precise mathematical terms. Machine learning (ML) is an alternative approach to reduce the inaccuracies of sedimentation models. It utilizes available domain knowledge for selecting the input and output variables for the ML models and uses modern regression techniques to fit the measured data. Two ML methods, artificial neural networks and model trees, are adopted to model bed-load and total-load transport using the measured data. The bed-load transport models are compared with the models due to Bagnold, Einstein, Parker et al., and van Rijn. The total-load transport models are compared with the models due to Ackers and White, Bagnold, Engelund and Hansen, and van Rijn. With the chosen data sets on bed-load and total-load transport the ML models provided better accuracy than the existing ones.
引用
收藏
页码:440 / 450
页数:11
相关论文
共 61 条
[21]  
Hollingshead A. B., 1971, Journal of the Hydraulics Division, V97, P1817, DOI [10.1061/JYCEAJ.0003139, DOI 10.1061/JYCEAJ.0003139]
[22]  
HUBBELL DW, 1959, 1476 US GEOL SURV
[23]  
IKEDA H, 1983, 2 U TSUK ENV RES CTR
[24]  
JONES ML, 1980, 80690 US GEOL SURV
[25]   BEDLOAD MEASUREMENTS, EAST FORK RIVER, WYOMING [J].
LEOPOLD, LB ;
EMMETT, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (04) :1000-1004
[26]   Modelling suspended sediment transport using an integrated numerical and ANNs model [J].
Lin, B ;
Namin, MM .
JOURNAL OF HYDRAULIC RESEARCH, 2005, 43 (03) :302-310
[27]  
MAVIS FT, 1937, IOWA U STUDIES ENG B, V1, P1
[28]  
MEYERPETER R, 1934, P 2 IAHR C STOCKH SW
[29]  
MEYERPETER R, 1948, P 2 IAHR C STOCKH SW
[30]  
MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417