Fast and robust multi-atlas segmentation of brain magnetic resonance images

被引:307
作者
Lotjonen, Jyrki M. P. [1 ]
Wolz, Robin [2 ]
Koikkalainen, Juha R. [1 ]
Thurfjell, Lennart [3 ]
Waldemar, Gunhild [4 ]
Soininen, Hilkka [5 ]
Rueckert, Daniel [2 ]
机构
[1] VTT Tech Res Ctr Finland, Knowledge Intens Serv, FIN-33101 Tampere, Finland
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[3] GE Healthcare, Med Diagnost R&D, Uppsala, Sweden
[4] Rigshosp, Copenhagen Univ Hosp, Dept Neurol, Memory Disorders Res Grp, DK-2100 Copenhagen, Denmark
[5] Univ Kuopio, Dept Neurol, Kuopio, Finland
关键词
MRI; Segmentation; Atlases; Registration; Hippocampus; NONRIGID REGISTRATION; MR-IMAGES; SUBCORTICAL STRUCTURES; SELECTION; MODEL; CLASSIFICATION; MAXIMIZATION; HIPPOCAMPUS; VALIDATION; STRATEGIES;
D O I
10.1016/j.neuroimage.2009.10.026
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered We study different similarity measures used in non-rigid registration We show that intensity differences for intensity normalised images can be used instead of standard normalised mutual Information in registration without compromising the accuracy but leading to threefold decrease in the computation time We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity modelling based on segmentation using expectation maximisation (EM) and optimisation via graph cuts The segmentation pipeline is evaluated with two data cohorts. IBSR data (N = 18, six subcortial structures thalamus, caudate, putamen, pallidum, hippocampus, amygdala) and ADNI data (N= 60, hippocampus) The average similarity index between automatically and manually generated volumes was 0 849 (IBSR, SIX subcortical structures) and 0880 (ADNI. hippocampus). The correlation coefficient for hippocampal volumes was 095 with the ADNI data The computation time using a standard multicore PC computer was about 3-4 min. Our results compare favourably with other recently published results (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2352 / 2365
页数:14
相关论文
共 42 条
[1]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[2]   Non-rigid registration of multi-modal images using both mutual information and cross-correlation [J].
Andronache, A. ;
von Siebenthal, M. ;
Szekely, G. ;
Cattin, Ph. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :3-15
[3]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[4]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[5]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[6]  
Babalola KO, 2008, LECT NOTES COMPUT SC, V5241, P409, DOI 10.1007/978-3-540-85988-8_49
[7]  
Bazin PL, 2007, LECT NOTES COMPUT SC, V4791, P94
[8]  
BHATTACHAIJEE M, 2008, MED IMAGE COMPUTING, V5242, P482
[9]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[10]   Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation [J].
Chupin, M. ;
Hammers, A. ;
Liu, R. S. N. ;
Colliot, O. ;
Burdett, J. ;
Bardinet, E. ;
Duncan, J. S. ;
Garnero, L. ;
Lemieux, L. .
NEUROIMAGE, 2009, 46 (03) :749-761