Molecular beam epitaxial growth of site-controlled InAs quantum dots on pre-patterned GaAs substrates

被引:10
作者
Atkinson, P. [1 ]
Bremner, S. P. [1 ]
Anderson, D. [1 ]
Jones, G. A. C. [1 ]
Ritchie, D. A. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
quantum dot; molecular beam epitaxy; indium arsenide;
D O I
10.1016/j.mejo.2006.05.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ex situ electron-beam lithography followed by conventional wet etching has been used to pattern small holes 60-150 nm wide, similar to 13 nm deep in GaAs substrates. These holes act as preferential nucleation sites for InAs dot growth during subsequent overgrowth. By varying either the InAs deposition amount or the thickness of a GaAs buffer layer, the occupancy over the patterned sites can be controlled. Comparison with growth on a planar substrate shows that preferential nucleation occurs due to a reduction in the apparent critical thickness above the pattern site; the magnitude of this reduction is dependent on the dimensions of the initial pattern. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1436 / 1439
页数:4
相关论文
共 17 条
[1]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[2]   Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates [J].
Atkinson, P. ;
Ward, M. B. ;
Bremner, S. P. ;
Anderson, D. ;
Farrow, T. ;
Jones, G. A. C. ;
Shields, A. J. ;
Ritchie, D. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2) :21-24
[3]   Site-control of InAs quantum dots using ex-situ electron-beam lithographic patterning of GaAs substrates [J].
Atkinson, P ;
Ward, MB ;
Bremner, SP ;
Anderson, D ;
Farrow, T ;
Jones, GAC ;
Shields, AJ ;
Ritchie, DA .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (4A) :2519-2521
[4]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[5]   Theory of quantum dot formation in Stranski-Krastanov systems [J].
Dobbs, HT ;
Vvedensky, DD ;
Zangwill, A .
APPLIED SURFACE SCIENCE, 1998, 123 :646-652
[6]   Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs(001) substrates [J].
Heidemeyer, H ;
Müller, C ;
Schmidt, OG .
JOURNAL OF CRYSTAL GROWTH, 2004, 261 (04) :444-449
[7]   Site-controlled InAs single quantum-dot structures on GaAs surfaces patterned by in situ electron-beam lithography [J].
Ishikawa, T ;
Nishimura, T ;
Kohmoto, S ;
Asakawa, K .
APPLIED PHYSICS LETTERS, 2000, 76 (02) :167-169
[8]   InAs quantum dots in GaAs holes: island number dependence on hole diameter and conduction-band coupling estimates [J].
Jeppesen, S ;
Miller, MS ;
Kowalski, B ;
Maximov, I ;
Samuelson, L .
SUPERLATTICES AND MICROSTRUCTURES, 1998, 23 (06) :1347-1352
[9]   Growth of three-dimensional quantum dot crystals on patterned GaAs (001) substrates [J].
Kiravittaya, S ;
Heidemeyer, H ;
Schmidt, OG .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 23 (3-4) :253-259
[10]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52