Selective modulation of excitatory and inhibitory microcircuits by dopamine

被引:118
作者
Gao, WJ [1 ]
Goldman-Rakic, PS [1 ]
机构
[1] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT 06510 USA
关键词
pyramidal neuron; interneuron; excitatory transmission; in vitro;
D O I
10.1073/pnas.262796399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses excitatory transmission between pyramidal neurons in the prefrontal cortex. Here, using paired recordings, we have investigated dopaminergic modulation of excitatory transmission from pyramidal neurons to fast-spiking (FS) interneurons. In contrast to its effect on recurrent excitation, dopamine was without effect on excitatory transmission to FS interneurons. However, dopamine has directly enhanced the excitability of the FS interneurons to the extent that even a single excitatory postsynaptic potential could initiate spiking with great temporal precision in some of them. These results indicate that dopamine's effects on excitatory transmission are target-specific and that the axon terminals of pyramidal neurons can be selectively regulated at the level of individual synapses. Thus, dopamine's net inhibitory effect on cortical function is remarkably constrained by the nature of the microcircuit elements on which it acts.
引用
收藏
页码:2836 / 2841
页数:6
相关论文
共 34 条
  • [21] Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: Evidence for microcolumnar organization in PFC
    Rao, SG
    Williams, GV
    Goldman-Rakic, PS
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (04) : 1903 - 1916
  • [22] Target-cell-specific facilitation and depression in neocortical circuits
    Reyes, A
    Lujan, R
    Rozov, A
    Burnashev, N
    Somogyi, P
    Sakmann, B
    [J]. NATURE NEUROSCIENCE, 1998, 1 (04) : 279 - 285
  • [23] Target cell-specific modulation of transmitter release at terminals from a single axon
    Scanziani, M
    Gähwiler, BH
    Charpak, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) : 12004 - 12009
  • [24] Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons
    Seamans, JK
    Gorelova, N
    Durstewitz, D
    Yang, CR
    [J]. JOURNAL OF NEUROSCIENCE, 2001, 21 (10) : 3628 - 3638
  • [25] SHEPHERD GM, 1998, SYNAPTIC ORG BRAIN, P1
  • [26] Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus
    Shigemoto, R
    Kinoshita, A
    Wada, E
    Nomura, S
    Ohishi, H
    Takada, M
    Flor, PJ
    Neki, A
    Abe, T
    Nakanishi, S
    Mizuno, N
    [J]. JOURNAL OF NEUROSCIENCE, 1997, 17 (19) : 7503 - 7522
  • [27] Salient features of synaptic organisation in the cerebral cortex
    Somogyi, P
    Tamás, G
    Lujan, R
    Buhl, EH
    [J]. BRAIN RESEARCH REVIEWS, 1998, 26 (2-3) : 113 - 135
  • [28] AMPLIFICATION OF EPSPS BY AXOSOMATIC SODIUM-CHANNELS IN NEOCORTICAL PYRAMIDAL NEURONS
    STUART, G
    SAKMANN, B
    [J]. NEURON, 1995, 15 (05) : 1065 - 1076
  • [29] Tamás G, 1998, J NEUROSCI, V18, P4255
  • [30] Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro
    Thomson, AM
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1997, 502 (01): : 131 - 147