Modulation of glutamate release from rat hippocampal synaptosomes by nitric oxide

被引:44
作者
Sequeira, SM
Ambrosio, AF
Malva, JO
Carvalho, AP
Carvalho, CM [1 ]
机构
[1] Univ Coimbra, Dept Zool, Ctr Neurosci Coimbra, P-3000 Coimbra, Portugal
[2] Univ Coimbra, Fac Med, P-3000 Coimbra, Portugal
[3] Univ Minho, Dept Biol, P-4710 Braga, Portugal
来源
NITRIC OXIDE-BIOLOGY AND CHEMISTRY | 1997年 / 1卷 / 04期
关键词
nitric oxide; NO synthase; glutamate release; energetic content; cGMP; hippocampal synaptosomes;
D O I
10.1006/niox.1997.0144
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We used hippocampal synaptosomes to study the effect of NO originating from NO donors and from the activation of the NO synthase on the Ca2+-dependent release of glutamate due to 4-aminopyridine (4-AP) depolarization. We distinguished between the effects of NO on the exocytotic and on the carrier-mediated release of glutamate, which we found to be related to an increase in cGMP content and to a reduction of the ATP/ADP ratio, respectively. The NO donor hydroxylamine, at concentrations less than or equal to 0.3 mM, inhibited the Ca2+-dependent glutamate release evoked by 4-AP, and addition of the NO donor, NOC-7, had a similar effect, which was reversed by the NO scavenger, carboxy-PTIO. Increasing the activity of NO synthase by addition of L-arginine also led to a decrease in the Ca2+-dependent release of glutamate induced by 4-AP, and this effect was reversed by inhibiting NO synthase with N-G-nitro-L-argnine. This depression of the exocytotic release of glutamate was accompanied by an increase in cGMP levels due to the stimulation of soluble guanylyl cyclase by NO, produced either by the NO donors (hydroxylamine <0.3 mM) or by the endogenous NO synthase, but no significant decrease in ATP/ADP ratio was observed. However, at concentrations greater than or equal to 0.3 mM, hydroxylamine drastically increased the basal release and completely inhibited the Ca2+-dependent release of glutamate (IC50 = 168 mu M). At these higher levels of NO, cGMP levels dropped to about 40% of the maximal values obtained at lower concentrations, and the ATP/ADP ratio decreased to about 50% (at 0.3 mM hydroxylamine). The large increase in the basal release could be partially inhibited by L-trans-2,4-PDC, previously loaded into the synaptosomes, suggesting that the nonexocytotic basal release occurred by reversal of the glutamate carrier. Therefore, the increase in cGMP induced by NO stimulation of the guanylyl cyclase decreases the exocytotic release of glutamate, but higher NO levels reduce the ATP/ADP ratio by inhibiting mitochondrial function, which therefore causes the massive release of cytosolic glutamate through the glutamate carrier. (C) 1997 Academic Press.
引用
收藏
页码:315 / 329
页数:15
相关论文
共 60 条
[1]   Mitochondria, free radicals, and neurodegeneration [J].
Beal, MF .
CURRENT OPINION IN NEUROBIOLOGY, 1996, 6 (05) :661-666
[2]   SYNTAXIN - A SYNAPTIC PROTEIN IMPLICATED IN DOCKING OF SYNAPTIC VESICLES AT PRESYNAPTIC ACTIVE ZONES [J].
BENNETT, MK ;
CALAKOS, N ;
SCHELLER, RH .
SCIENCE, 1992, 257 (5067) :255-259
[3]  
BOLANOS JP, 1994, J NEUROCHEM, V63, P910
[4]   NITRIC-OXIDE DIRECTLY ACTIVATES CALCIUM-DEPENDENT POTASSIUM CHANNELS IN VASCULAR SMOOTH-MUSCLE [J].
BOLOTINA, VM ;
NAJIBI, S ;
PALACINO, JJ ;
PAGANO, PJ ;
COHEN, RA .
NATURE, 1994, 368 (6474) :850-853
[5]   THE NITRIC-OXIDE CYCLIC-GMP PATHWAY AND SYNAPTIC DEPRESSION IN RAT HIPPOCAMPAL SLICES [J].
BOULTON, CL ;
IRVING, AJ ;
SOUTHAM, E ;
POTIER, B ;
GARTHWAITE, J ;
COLLINGRIDGE, GL .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1994, 6 (10) :1528-1535
[6]   ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :682-685
[7]   CONFORMATIONALLY DEFINED NEUROTRANSMITTER ANALOGS - SELECTIVE-INHIBITION OF GLUTAMATE UPTAKE BY ONE PYRROLIDINE-2,4-DICARBOXYLATE DIASTEREOMER [J].
BRIDGES, RJ ;
STANLEY, MS ;
ANDERSON, MW ;
COTMAN, CW ;
CHAMBERLIN, AR .
JOURNAL OF MEDICINAL CHEMISTRY, 1991, 34 (02) :717-725
[8]   NITRIC-OXIDE REGULATES MITOCHONDRIAL RESPIRATION AND CELL FUNCTIONS BY INHIBITING CYTOCHROME-OXIDASE [J].
BROWN, GC .
FEBS LETTERS, 1995, 369 (2-3) :136-139
[9]   RELATION OF [CA2+](I) TO DOPAMINE RELEASE IN STRIATAL SYNAPTOSOMES - ROLE OF CA2+ CHANNELS [J].
CARVALHO, CM ;
FERREIRA, IL ;
DUARTE, CB ;
MALVA, JO ;
TRETTER, L ;
ADAMVIZI, V ;
CARVALHO, AP .
BRAIN RESEARCH, 1995, 669 (02) :234-244
[10]   REVERSIBLE INHIBITION OF CYTOCHROME-C-OXIDASE, THE TERMINAL ENZYME OF THE MITOCHONDRIAL RESPIRATORY-CHAIN, BY NITRIC-OXIDE - IMPLICATIONS FOR NEURODEGENERATIVE DISEASES [J].
CLEETER, MWJ ;
COOPER, JM ;
DARLEYUSMAR, VM ;
MONCADA, S ;
SCHAPIRA, AHV .
FEBS LETTERS, 1994, 345 (01) :50-54