Quantum pumping in the magnetic field: Role of discrete symmetries

被引:44
作者
Aleiner, IL [1 ]
Altshuler, BL
Kamenev, A
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] NEC Res Inst, Princeton, NJ 08540 USA
[4] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
关键词
D O I
10.1103/PhysRevB.62.10373
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider an effect of the discrete spatial symmetries and magnetic field on the adiabatic charge pumping in mesoscopic systems. In the general case, there is no symmetry of the pumped charge with respect to the inversion of magnetic field Q(B)not equalQ(-B). We find that the reflection symmetries give rise to relations Q(B)=Q(-B) or Q(B)=-Q(-B) depending on the orientation of the reflection axis. In the presence of the center of inversion Q(B)=0. Additional symmetries may arise in the case of bilinear pumping.
引用
收藏
页码:10373 / 10376
页数:4
相关论文
共 15 条
[1]   Adiabatic charge pumping in almost open dots [J].
Aleiner, IL ;
Andreev, AV .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1286-1289
[2]   Counting statistics of an adiabatic pump [J].
Andreev, A ;
Kamenev, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1294-1297
[3]  
AVRON JE, CONDMAT0002194
[4]   Reflection symmetric ballistic microstructures: Quantum transport properties [J].
Baranger, HU ;
Mello, PA .
PHYSICAL REVIEW B, 1996, 54 (20) :14297-14300
[5]   Scattering approach to parametric pumping [J].
Brouwer, PW .
PHYSICAL REVIEW B, 1998, 58 (16) :10135-10138
[6]  
DEVORET MH, 1995, LES HOUCHES SESSION
[7]  
FALKO VI, 1989, ZH EKSP TEOR FIZ+, V95, P328
[8]   QUANTIZED CURRENT IN A QUANTUM-DOT TURNSTILE USING OSCILLATING TUNNEL BARRIERS [J].
KOUWENHOVEN, LP ;
JOHNSON, AT ;
VANDERVAART, NC ;
HARMANS, CJPM ;
FOXON, CT .
PHYSICAL REVIEW LETTERS, 1991, 67 (12) :1626-1629
[9]  
Landau L. D., 1977, QUANTUM MECH
[10]   FALSE TIME-REVERSAL VIOLATION AND ENERGY-LEVEL STATISTICS - THE ROLE OF ANTI-UNITARY SYMMETRY [J].
ROBNIK, M ;
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (05) :669-682