Why Nature has made a choice of one time and three space coordinates?

被引:6
作者
Borstnik, NM
Nielsen, HB
机构
[1] Univ Ljubljana, Dept Phys, Ljubljana 1111, Slovenia
[2] Primorska Inst Nat Sci & Technol, Koper 6000, Slovenia
[3] Niels Bohr Inst, Dept Phys, DK-2100 Copenhagen, Denmark
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 49期
关键词
D O I
10.1088/0305-4470/35/49/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is, the question why we seem to experience four-dimensional spacetime with three ordinary and one time dimensions. Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. Accepting our explanation of the spacetime signature and the number of dimensions would be a point supporting (further) the importance of the 'internal space'.
引用
收藏
页码:10563 / 10571
页数:9
相关论文
共 28 条
[1]   GROUP THEORETICAL DISCUSSION OF RELATIVISTIC WAVE EQUATIONS [J].
BARGMANN, V ;
WIGNER, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1948, 34 (05) :211-223
[2]   How to generate spinor representations in any dimension in terms of projection and nilpotent operators [J].
Borstnik, NM ;
Nielsen, HB .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5782-5803
[3]   Why odd-space and odd-time dimensions in even-dimensional spaces? [J].
Borstnik, NM ;
Nielsen, HB .
PHYSICS LETTERS B, 2000, 486 (3-4) :314-321
[4]   SPIN CONNECTION AS A SUPERPARTNER OF A VIELBEIN [J].
BORSTNIK, NM .
PHYSICS LETTERS B, 1992, 292 (1-2) :25-29
[5]   Unification of spins and charges [J].
Borstnik, NSM .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (01) :315-337
[6]  
BORSTNIK NSM, 2002, UNPUB INTERNAL SPACE
[7]  
BOUSSO R, 1998, HEPTH9807148
[8]   WHY IS SPACETIME LORENTZIAN [J].
CARLINI, A ;
GREENSITE, J .
PHYSICAL REVIEW D, 1994, 49 (02) :866-878
[9]  
CHENG TP, 1986, GAUGE THEORIES ELEME
[10]  
CHEW GF, 1973, PROPERTIES FUNDAMENT, P3