Inexact interior-point method

被引:57
作者
Bellavia, S [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
interior-point methods; constrained equations; inexact Newton methods; superlinear convergence; global convergence;
D O I
10.1023/A:1022663100715
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce an inexact interior-point algorithm for a constrained system of equations. The formulation of the problem is quite general and includes nonlinear complementarity problems of various kinds. In our convergence theory, we interpret the inexact interior-point method as an inexact Newton method. This enables us to establish a global convergence theory for the proposed algorithm. Under the additional assumption of the invertibility of the Jacobian at the solution, the superlinear convergence of the iteration sequence is proved.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 12 条
[1]  
BONNANS JF, 1995, 2745 I NAT RECH INF
[2]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[3]   GLOBALLY CONVERGENT INEXACT NEWTON METHODS [J].
EISENSTAT, SC ;
WALKER, HF .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :393-422
[4]   On the formulation and theory of the Newton interior-point method for nonlinear programming [J].
ElBakry, AS ;
Tapia, RA ;
Tsuchiya, T ;
Zhang, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) :507-541
[5]   A QMR-based interior-point algorithm for solving linear programs [J].
Freund, RW ;
Jarre, F .
MATHEMATICAL PROGRAMMING, 1997, 76 (01) :183-210
[6]  
KOJIMA M, 1994, MATH PROGRAM, V65, P43, DOI 10.1007/BF01581689
[7]  
PORTUGAL L, 1995, TRUNCATED PRIMALINFE
[8]  
PORTUGAL L, 1995, TRUNCATED NEWTON INT
[9]   Interior-point methods for nonlinear complementarity problems [J].
Potra, FA ;
Ye, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 88 (03) :617-642
[10]  
SUN J, IN PRESS SIAM J OPTI