The role of helix 1 aspartates and salt bridges in the stability and conversion of prion protein

被引:67
作者
Speare, JO
Rush, TS
Bloom, ME
Caughey, B [1 ]
机构
[1] NIAID, Rocky Mt Lab, Lab Persistent Viral Dis, NIH, Hamilton, MT 59840 USA
[2] Univ Montana, Dept Chem, Missoula, MT 59812 USA
关键词
D O I
10.1074/jbc.M211599200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A key event in the pathogenesis of transmissible spongiform encephalopathies is the conversion of PrP-sen to PrP-res. Morrissey and Shakhnovich (Morrissey, M. P., and Shakhnovich, E. I. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11293-11298) proposed that the conversion mechanism involves critical interactions at helix 1 (residues 144-153) and that the helix is stabilized on PrP-sen by intra-helix salt bridges between two aspartic acid-arginine ion pairs at positions 144 and 148 and at 147 and 151, respectively. Mutants of the hamster prion protein were constructed by replacing the aspartic acids with either asparagines or alanines to destabilize the proposed helix 1 salt bridges. Thermal and chemical denaturation experiments using circular dichroism spectroscopy indicated the overall structures of the mutants are not substantially destabilized but appear to unfold differently. Cell-free conversion reactions per. formed using ionic denaturants, detergents, and salts (conditions unfavorable to salt bridge formation) showed no significant differences between conversion efficiencies of mutant and wild type proteins. Using conditions more favorable to salt bridge formation, the mutant proteins converted with up to 4-fold higher efficiency than the wild type protein. Thus, although spectroscopic data indicate the salt bridges do not substantially stabilize PrP-sen, the cell-free conversion data suggest that Asp-144 and Asp-147 and their respective salt bridges stabilize PrP-sen from converting to PrP-res.
引用
收藏
页码:12522 / 12529
页数:8
相关论文
共 46 条
[1]  
Alonso DOV, 2001, ADV PROTEIN CHEM, V57, P107
[2]   Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes [J].
Baron, GS ;
Wehrly, K ;
Dorward, DW ;
Chesebro, B ;
Caughey, B .
EMBO JOURNAL, 2002, 21 (05) :1031-1040
[3]   Pathway complexity of prion protein assembly into amyloid [J].
Baskakov, IV ;
Legname, G ;
Baldwin, MA ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21140-21148
[4]   ISOLATION AND STRUCTURAL STUDIES OF THE INTACT SCRAPIE AGENT PROTEIN [J].
BOLTON, DC ;
BENDHEIM, PE ;
MARMORSTEIN, AD ;
POTEMPSKA, A .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1987, 258 (02) :579-590
[5]  
CAUGHEY B, 1991, J BIOL CHEM, V266, P18217
[6]   N-TERMINAL TRUNCATION OF THE SCRAPIE-ASSOCIATED FORM OF PRP BY LYSOSOMAL PROTEASE(S) - IMPLICATIONS REGARDING THE SITE OF CONVERSION OF PRP TO THE PROTEASE-RESISTANT STATE [J].
CAUGHEY, B ;
RAYMOND, GJ ;
ERNST, D ;
RACE, RE .
JOURNAL OF VIROLOGY, 1991, 65 (12) :6597-6603
[7]  
Caughey B, 1999, METHOD ENZYMOL, V309, P122
[8]   Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state [J].
Caughey, B ;
Kocisko, DA ;
Raymond, GJ ;
Lansbury, PT .
CHEMISTRY & BIOLOGY, 1995, 2 (12) :807-817
[9]   Interactions between prion protein isoforms: the kiss of death? [J].
Caughey, B .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (04) :235-242
[10]  
Caughey B, 2001, ADV PROTEIN CHEM, V57, P139