Proteolysis, the ubiquitin-proteasome system, and renal diseases

被引:29
作者
Debigaré, R [1 ]
Price, SR [1 ]
机构
[1] Emory Univ, Div Renal, Atlanta, GA 30322 USA
关键词
protein degradation; von Hippel-Lindau disease; Liddle syndrome; ischemic acute renal failure; muscle wasting;
D O I
10.1152/ajprenal.00244.2002
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Protein degradation is a critical process for the growth and function of cells. Proteolysis eliminates abnormal proteins, controls many cellular regulatory processes, and supplies amino acids for cellular remodeling. When substrates of proteolytic pathways are poorly recognized or there is mistiming of proteolysis, profound changes in cell function can occur. Based on these potential problems, it is not surprising that alterations in proteolytic enzymes/cofactors or in the structure of protein substrates that render them more or less susceptible to degradation are responsible for disorders associated with kidney cell malfunctions. Multiple pathways exist for protein degradation. The best-described proteolytic system is the ubiquitin-proteasome pathway, which requires ATP and degrades the bulk of cellular and some membrane proteins. This review will survey examples of renal abnormalities that are associated with defective protein degradation involving the ubiquitin- proteasome pathway. Loss of muscle mass associated with chronic renal failure, von Hippel-Lindau disease, Liddle syndrome, and ischemic acute renal failure will be discussed. These examples are indicative of the diverse roles of the ubiquitin-proteasome system in renal-associated pathological conditions.
引用
收藏
页码:F1 / F8
页数:8
相关论文
共 83 条
[1]   Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome [J].
Abriel, H ;
Loffing, J ;
Rebhun, JF ;
Pratt, JH ;
Schild, L ;
Horisberger, JD ;
Rotin, D ;
Staub, O .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (05) :667-673
[2]   An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation [J].
Agarraberes, FA ;
Terlecky, SR ;
Dice, JF .
JOURNAL OF CELL BIOLOGY, 1997, 137 (04) :825-834
[3]   Smads as transcriptional co-modulators [J].
Attisano, L ;
Wrana, JL .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) :235-243
[4]   N-end rule specificity within the ubiquitin/proteasome pathway is not an affinity effect [J].
Baboshina, OV ;
Crinelli, R ;
Siepmann, TJ ;
Haas, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :39428-39437
[5]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[6]  
Bailey JL, 1997, MINER ELECTROL METAB, V23, P198
[7]   The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway [J].
Bailey, JL ;
Wang, XN ;
England, BK ;
Price, SR ;
Ding, XY ;
Mitch, WE .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (06) :1447-1453
[8]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[9]   The proteasome [J].
Bochtler, M ;
Ditzel, L ;
Groll, M ;
Hartmann, C ;
Huber, R .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1999, 28 :295-+
[10]   Identification of ubiquitin ligases required for skeletal muscle atrophy [J].
Bodine, SC ;
Latres, E ;
Baumhueter, S ;
Lai, VKM ;
Nunez, L ;
Clarke, BA ;
Poueymirou, WT ;
Panaro, FJ ;
Na, EQ ;
Dharmarajan, K ;
Pan, ZQ ;
Valenzuela, DM ;
DeChiara, TM ;
Stitt, TN ;
Yancopoulos, GD ;
Glass, DJ .
SCIENCE, 2001, 294 (5547) :1704-1708