Stirling probability and q-bosons

被引:3
作者
Arik, M [1 ]
Unel, G [1 ]
机构
[1] Bogazici Univ, Dept Phys, TR-80815 Istanbul, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 04期
关键词
D O I
10.1088/0305-4470/31/4/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Normal ordering of powers of the bosonic number operator can be used to define a discrete probability distribution associated with the number of elements of a random set. We represent these random sets by vectors in a Hilbert space and obtain q-bosons.
引用
收藏
页码:1121 / 1125
页数:5
相关论文
共 12 条
[1]   HILBERT SPACES OF ANALYTIC-FUNCTIONS AND GENERALIZED COHERENT STATES [J].
ARIK, M ;
COON, DD .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) :524-527
[2]  
ARIK M, 1997, IN PRESS PHYS LETT A
[3]   On Abelian fields [J].
Carlitz, Leonard .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) :122-136
[4]  
FADDEEV LD, 1989, ALGEBRA ANAL, V1, P178
[5]   SIEVED PARTITION-FUNCTIONS AND Q-BINOMIAL COEFFICIENTS [J].
GARVAN, F ;
STANTON, D .
MATHEMATICS OF COMPUTATION, 1990, 55 (191) :299-311
[6]  
GLOUD HW, 1961, DUKE MATH J, V28, P281
[7]  
Jackson F.H., 1951, Q J MATH OXFORD SER, V2
[8]   NORMAL ORDERING FOR DEFORMED BOSON OPERATORS AND OPERATOR-VALUED DEFORMED STIRLING NUMBERS [J].
KATRIEL, J ;
KIBLER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (09) :2683-2691
[9]   Ordering relations for q-boson operators, continued fraction techniques and the q-CBH enigma [J].
Katriel, J ;
Duchamp, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24) :7209-7225
[10]   CONGRUENCE PROPERTIES OF Q-ANALOGS [J].
SAGAN, BE .
ADVANCES IN MATHEMATICS, 1992, 95 (01) :127-143