DNMT3B mutations and DNA methylation defect define two types of ICF syndrome

被引:85
作者
Jiang, YL
Rigolet, M
Bourc'his, D
Nigon, F
Bokesoy, I
Fryns, JP
Hultén, M
Jonveaux, P
Maraschio, P
Mégarbané, A
Moncla, A
Viegas-Péquignot, E
机构
[1] Inst Jacques Monod, INSERM, E367, F-75005 Paris, France
[2] Ankara Univ, Fac Med, Dept Med Biol, TR-06100 Ankara, Turkey
[3] Katholieke Univ Leuven, Ctr Human Genet, Louvain, Belgium
[4] Univ Warwick, Ctr Hlth Serv Studies, Coventry CV4 7AL, W Midlands, England
[5] CHU Nancy, Hop Brabois, Nancy, France
[6] Univ Pavia, Dipartimento Umana Ereditaria, I-27100 Pavia, Italy
[7] St Josephs Univ, Fac Med, Beirut, Lebanon
[8] Ctr Hosp Reg & Univ Marseille, Hop Timone, Marseille, France
关键词
ICF syndrome; heterochromatin; alpha satellites; classical satellites; DNA methylation; DNMT3B; genetic heterogeneity;
D O I
10.1002/humu.20113
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
ICF syndrome is a rare autosomal recessive disease characterized by variable immunodeficiency, centromeric instability, and facial abnormalities. Mutations in the catalytic domain of DNMT3B, a gene encoding a de novo DNA methyltransferase, have been recognized in a subset of patients. ICF syndrome is a genetic disease directly related to a genomic methylation defect that mainly affects classical satellites 2 and 3, both components of constitutive heterochromatin. The variable incidence of DNMT3B mutations and the differential methylation defect of alpha satellites allow the identification of two types of patients, both showing an undermethylation of classical satellite DNA. This classification illustrates the specificity of the methylation process and raises questions about the genetic heterogeneity of the ICF syndrome. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 37 条
[1]  
BAULD R, 1991, J MED GENET, V28, P63
[2]   Defective B-cell-negative selection and terminal differentiation in the ICF syndrome [J].
Blanco-Betancourt, CE ;
Moncla, A ;
Milili, M ;
Jiang, YL ;
Viegas-Péquignot, EM ;
Roquelaure, B ;
Thuret, I ;
Schiff, C .
BLOOD, 2004, 103 (07) :2683-2690
[3]   Abnormal methylation does not prevent X inactivation in ICF patients [J].
Bourc'his, D ;
Miniou, P ;
Jeanpierre, M ;
Gomes, DM ;
Dupont, JM ;
De Saint-Basile, G ;
Maraschio, P ;
Tiepolo, L ;
Viegas-Péquignot, E .
CYTOGENETICS AND CELL GENETICS, 1999, 84 (3-4) :245-252
[4]  
Bourc'his Deborah, 2004, P776
[5]   DNA methyltransferases get connected to chromatin [J].
Burgers, WA ;
Fuks, F ;
Kouzarides, T .
TRENDS IN GENETICS, 2002, 18 (06) :275-277
[6]  
De Ravel TJL, 2001, GENET COUNSEL, V12, P379
[7]   CENTROMERIC INSTABILITY OF CHROMOSOME-1, CHROMOSOME-9 AND CHROMOSOME-16 ASSOCIATED WITH COMBINED IMMUNODEFICIENCY [J].
FRYNS, JP ;
AZOU, M ;
JAEKEN, J ;
EGGERMONT, E ;
PEDERSEN, JC ;
VANDENBERGHE, H .
HUMAN GENETICS, 1981, 57 (01) :108-110
[8]   Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases [J].
Gowher, H ;
Jeltsch, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (23) :20409-20414
[9]   Escape from gene silencing in ICF syndrome:: evidence for advanced replication time as a major determinant [J].
Hansen, RS ;
Stöger, R ;
Wijmenga, C ;
Stanek, AM ;
Canfield, TK ;
Luo, P ;
Matarazzo, MR ;
D'Esposito, M ;
Feil, R ;
Gimelli, G ;
Weemaes, CMR ;
Laird, CD ;
Gartler, SM .
HUMAN MOLECULAR GENETICS, 2000, 9 (18) :2575-2587
[10]   The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome [J].
Hansen, RS ;
Wijmenga, C ;
Luo, P ;
Stanek, AM ;
Canfield, TK ;
Weemaes, CMR ;
Gartler, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (25) :14412-14417