Near-IR irradiation of the S2 state of the water oxidizing complex of photosystem II at liquid helium temperatures produces the metalloradical intermediate attributed to S1YZ•

被引:51
作者
Koulougliotis, D
Shen, JR
Ioannidis, N
Petrouleas, V
机构
[1] NCSR Demokritos, Inst Mat Sci, Athens 15310, Greece
[2] Univ Thessaly, Dept Biochem & Biotechnol, Larisa 41221, Greece
[3] RIKEN, Harima Inst, Mikazuki, Hyogo 6795148, Japan
[4] JST, PRESTO, Mikazuki, Hyogo 6795148, Japan
关键词
D O I
10.1021/bi027051o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Near-IR (NIR) excitation at liquid He temperatures of photosystem II (PSII) membranes from the cyanobacterium Synechococcus vulcanus or from spinach poised in the S-2 state results in the production of a g = 2.035 EPR resonance, reminiscent of metalloradical signals. The signal is smaller in the spinach preparations, but it is significantly enhanced by the addition of exogenous quinones. Ethanol (2-3%, v/v) eliminates the ability to trap the signal. The g = 2.035 signal is identical to the one recently obtained by Nugent et a]. by visible-light illumination of the S, state, and preferably assigned to S1Yz. [Nugent, J. H. A., Muhiuddin, I. P., and Evans, M. C. W. (2002) Biochemistry 41, 4117-4126]. The production of the g = 2.035 signal by liquid He temperature NIR excitation of the S, state is paralleled by a significant reduction (typically 40-45% in S. vulcanus) of the S-2 state multiline signal. This is in part due to the conversion of the Mn cluster to higher spin states, an effect documented by Boussac et al. [Boussac, A., Un, S., Horner, O., and Rutherford, A. W. (1998) Biochemistry 37, 4001-4007], and in part due to the conversion to the g = 2.035 configuration. Following the decay of the g = 2.035 signal at liquid helium temperatures (decay halftimes in the time range of a few to tens of minutes depending on the preparation), annealing at elevated temperatures (-80 degreesC) results in only partial restoration of the S-2 state multiline signal. The full size of the signal can be restored by visible-light illumination at -80 degreesC, implying that during the near-IR excitation and subsequent storage at liquid helium temperatures recombination with Q(A)(-) (and therefore decay of the S-2 state to the S, state) occurred in a fraction of centers. In support of this conclusion, the g = 2.035 signal remains stable for several hours (at 11 K) in centers poised in the S(2)(...)Q(A) configuration before the NIR excitation. The extended stability of the signal under these conditions has allowed the measurement of the microwave power saturation and the temperature dependence in the temperature range of 3.8-11 K. The signal intensity follows Curie law temperature dependence, which suggests that it arises from a ground spin state, or a very low-lying excited spin state. The P-1/2 (microwave power at half-saturation) value is 1.7 mW at 3.8 K and increases to 96 mW at 11 K. The large width of the g = 2.035 signal and its relatively fast relaxation support the assignment to a radical species in the proximity of the Mn cluster. The whole phenomenology of the g = 2.035 signal production is analogous to the effects of NIR excitation on the S-3 state [loannidis, N., Nugent, J. H. A., and Petrouleas, V. (2002) Biochemistry 41, 9589-9600] producing an S-2'y(Z)(.) intermediate. In the present case, the intermediate is assigned to S1YZ*. The NIR-induced increase in the oxidative capability of the Mn cluster is discussed in relation to the photochemical properties of a Mn(III) ion that exists in both S-2 and S-3 states. The EPR properties of the S1YZ* intermediate cannot be reconciled easily with our current understanding of the magnetic properties of the S, state. It is suggested that oxidation of tyr Z alters the magnetic properties of the Mn cluster via exchange of a proton.
引用
收藏
页码:3045 / 3053
页数:9
相关论文
共 75 条
[51]   FOURIER-TRANSFORM INFRARED-SPECTRUM OF THE RADICAL-CATION OF BETA-CAROTENE PHOTOINDUCED IN PHOTOSYSTEM-II [J].
NOGUCHI, T ;
MITSUKA, T ;
INOUE, Y .
FEBS LETTERS, 1994, 356 (2-3) :179-182
[52]   EPR investigation of water oxidizing photosystem II: Detection of new EPR signals at cryogenic temperatures [J].
Nugent, JHA ;
Turconi, S ;
Evans, MCW .
BIOCHEMISTRY, 1997, 36 (23) :7086-7096
[53]   Electron transfer from the water oxidizing complex at cryogenic temperatures:: The S1 to S2 step [J].
Nugent, JHA ;
Muhiuddin, IP ;
Evans, MCW .
BIOCHEMISTRY, 2002, 41 (12) :4117-4126
[54]   ABNORMAL REDOX REACTIONS IN PHOTOSYNTHETIC O2-EVOLVING CENTERS IN NACL/EDTA-WASHED PS-II - A DARK-STABLE EPR MULTILINE SIGNAL AND AN UNKNOWN POSITIVE CHARGE ACCUMULATOR [J].
ONO, T ;
INOUE, Y .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (03) :269-277
[55]   X-RAY-DETECTION OF THE PERIOD-4 CYCLING OF THE MANGANESE CLUSTER IN PHOTOSYNTHETIC WATER OXIDIZING ENZYME [J].
ONO, T ;
NOGUCHI, T ;
INOUE, Y ;
KUSUNOKI, M ;
MATSUSHITA, T ;
OYANAGI, H .
SCIENCE, 1992, 258 (5086) :1335-1337
[56]   Fourier-transform resonance Raman spectra of cation carotenoid in photosystem II reaction centres [J].
Pascal, A ;
Telfer, A ;
Barber, J ;
Robert, B .
FEBS LETTERS, 1999, 453 (1-2) :11-14
[57]   55Mn pulsed ENDOR demonstrates that the Photosystem II "split" EPR signal arises from a magnetically-coupled mangano-tyrosyl complex [J].
Peloquin, JM ;
Campbell, KA ;
Britt, RD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (27) :6840-6841
[58]   LIGHT-INDUCED OXIDATION OF THE ACCEPTOR-SIDE FE(II) OF PHOTOSYSTEM-II BY EXOGENOUS QUINONES ACTING THROUGH THE QB BINDING-SITE .1. QUINONES, KINETICS AND PH-DEPENDENCE [J].
PETROULEAS, V ;
DINER, BA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 893 (02) :126-137
[59]   Coupling of electron and proton transfer in the photosynthetic water oxidase [J].
Rappaport, F ;
Lavergne, J .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1503 (1-2) :246-259
[60]   Oxidation states of the manganese cluster during the flash-induced S-state cycle of the photosynthetic oxygen-evolving complex [J].
Roelofs, TA ;
Liang, WC ;
Latimer, MJ ;
Cinco, RM ;
Rompel, A ;
Andrews, JC ;
Sauer, K ;
Yachandra, VK ;
Klein, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3335-3340