Subsystem fault tolerance with the Bacon-Shor code

被引:141
作者
Aliferis, Panos [1 ]
Cross, Andrew W.
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] MIT, Cambridge, MA 02139 USA
[3] IBM Corp, Thomas J Watson Res Ctr, Div Res, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.98.220502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss how the presence of gauge subsystems in the Bacon-Shor code [D. Bacon , Phys. Rev. A 73, 012340 (2006)] leads to remarkably simple and efficient methods for fault-tolerant error correction (FTEC). Most notably, FTEC does not require entangled ancillary states, and it can be implemented with nearest-neighbor two-qubit measurements. By using these methods, we prove a lower bound on the quantum accuracy threshold, 1.94x10(-4) for adversarial stochastic noise, that improves previous lower bounds by nearly an order of magnitude.
引用
收藏
页数:4
相关论文
共 17 条
[1]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[2]  
ALIFERIS P, 2007, THESIS CALTECH PASAD
[3]  
ALY S, ARXIVQUANTPH0610153
[4]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[5]  
Gottesman D., 1997, THESIS CALTECH PASAD
[6]   Protected realizations of quantum information [J].
Knill, E. .
PHYSICAL REVIEW A, 2006, 74 (04)
[7]   Quantum computing with realistically noisy devices [J].
Knill, E .
NATURE, 2005, 434 (7029) :39-44
[8]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[9]  
Kribs DW, 2006, QUANTUM INF COMPUT, V6, P382
[10]   Stabilizer formalism for operator quantum error correction [J].
Poulin, D .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)